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Abstract

Automatically analysing stylistic features in movies is a
challenging task, as it requires an in-depth knowledge of
cinematography. In the literature, only a handful of meth-
ods explore stylistic feature extraction, and they typically
focus on limited low-level image and shot features (colour
histograms, average shot lengths or shot types, amount of
camera motion). These, however, only capture a subset of
the stylistic features which help to characterise a movie (e.g.
black and white vs. coloured, or film editing). To this end,
in this work, we systematically explore seven high-level fea-
tures for movie style analysis: character segmentation, pose
estimation, depth maps, focus maps, frame layering, cam-
era motion type and camera pose. Our findings show that
low-level features remain insufficient for movie style analy-
sis, while high-level features seem promising.

1. Introduction

While the first film was released over a century ago, the
rise of streaming platforms has led to two important phe-
nomena: an acceleration in the number of films produced,
and a very wide availability of these films (recent or old).

Movies are complex audio-visual contents to analyse and
understand. They operate on multiple sensory and cognitive
levels, built on a rich history of techniques. They are also
difficult to formalize and offer a wide variety of dimensions
to study (e.g. genre, artistic intentions, aesthetics, narrative
arcs, and style). In turn, they offer a rich, yet challenging,
source of data analysis. However, even today, machines re-
main unable to capture high-level information like the style
or intention of directors, e.g. emotions or long-term interac-
tions between characters. In fact, understanding all the de-
tails that make up a movie remain challenging. It requires
great prior knowledge of cinematography. The analysis of
director’s intentions also remain subjective.

Only a few learning-based approaches rely on cinemato-
graphic data, director [5] or genre and style classifica-
tion [25)]. These methods share a commonality: they all
extract low-level features (e.g.: dominant colour, number of
frames per shot) to guide their decisions. However, we are
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Figure 1. Recognisable director movie styles. Eight frames from
eight movies from two directors: (a) Quentin Tarantino and (b)
Wes Anderson. Even movies from different years (Reservoir Dogs
in 1992 to Kill Bill Vol.1 in 2003) and different types (The Grand
Budapest Hotel with live action or Fantastic Mr. Fox with an-
imation) from the same director encompass a common style, i.e.,
trunk-style looking-up point-of-view shot for (a); symetric and de-
tailed scenes for (b). From the top-left to the bottom-right: Kill Bill Vol.1
(2003), Reservoir Dogs (1992), Pulp Fiction (1994), Death Proof (2007),
The French Dispatch (2021), The Grand Budapest Hotel (2014), The Life
Aquatic with Steve Zissou (2004) and Fantastic Mr. Fox (2009).

convinced that director’s secrets are deeply hidden in their
frames and audio tracks, and such low-level features remove
a large amount of information, crucial to unveil them.

Hence, as low-level features are too limited and raw
frames are too general for the current methods, we propose
to explore the extraction of higher-level cinematographic
features. They should be both general enough, i.e. able
to encapsulate a maximum of information, and elaborate
enough, i.e. able to focus on particularities. Hence, as cin-
ematography experts proceed, we propose to decompose
film analysis into different axes (e.g.: frame composition,
or camera behaviour), and to build high-level features, spe-
cific for each axis. Our goal is to keep the information from
a particular axis, and remove the rest. Finally, combining
these different specific features makes it possible to retrieve
global information about the cinematic content.

In this paper, we first present a set of straightforward
experiments on directors’ style classification. They show
how complex this task is. By examining the resulted fea-
ture space, this also corroborates our initial claim that low-
level features are not representative for this task (Section[3).
Then, we analyse high-level features which remain unex-
plored and could improve movie style understanding, i.e.,



frame layering and camera motion type (Section [). This
work explores a promising avenue in movie style under-
standing, and paves the way for future research on this area.

2. Related Work

Cinematography is a well-studied field, both for analy-
sis and synthesis purposes. As pointed by [19], many ap-
plications can benefit from automatic cinematic approaches
(e.g. virtual production or interactive drama). Furthermore,
movies and TV shows become more easily accessible, espe-
cially on the web, and just start to get exploited in computer
vision.

Working with these video contents, [3] propose a mul-
timodal person clustering algorithm, and [18]] propose a
method to generate textual description of a clip. These con-
tents are also exploited in more general video analysis tasks,
as they provide examples of daily scenes. For instance, [22]
learn social interactions from movies and [14] propose a
dataset for realistic human action recognition.

Some works also focus on automatic cinematography
analysis. [S) 25, 20] extract low-level features from vi-
sual, audio and textual modalities to tackle different cine-
matic tasks, e.g. director classification, genre classification,
film rating prediction or production year prediction. More
recently, large-scale annotated movie datasets such as [9]
open the perspective for better cinematic analysis. [16] pro-
pose a supervised framework to classify the shot type (cam-
era movement and scale), [[17] propose a multimodal scene
segmentation method, and [[10] propose to learn visual mod-
els from movie trailers. However, approaches focusing on
the analysis of film genre or directorial styles remain lim-
ited, probably due to a lack of data. Indeed, creating large
datasets of movies and TV shows requires to acquire all
copyrights. Such approaches also rely solely on low-level
visual or audio features (e.g. colour histograms, shot length
distribution, voice spectrograms). To overcome these limi-
tations, in this paper, we propose to explore the extraction
and use of high-level features, enabling to retrieve more
global information on the directorial style of a movie.

3. Low-Level Features in Director Recognition

Given a set of directors and clips from their respec-
tive movies, director classification consists in associating
each clip with its director. In this section, we propose a
supervised approach to director classification on a dataset
(CMDS) specifically designed for this task.

Method. For classification, we rely on a 3D variant of the
ResNet architecture [7]. We take as input 16 raw frames, se-
lected by splitting the video clips into chunks of 32 frames,
which are then randomly sampled.

Table 1. Director classification results.

Method Precision Recall F1

Random 12.77 12.86 11.89
Weighted Random 12.42 1242 1242
ResNet-18 (scratch) 35.93 34.16 35.02
ResNet-18 (k700) 51.17 47.34 49.18
ResNet-50 (scratch) 38.14 38.55 38.34
ResNet-50 (k700) 48.08 4191 44.78
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Figure 2. t-SNE visualization of feature embedding on CMDS.
Clusters correspond to: (1) 1970s movies, (2) 1980s movies, (3)
black and white movies, (4) 1990s movies and (5) 2000s movies.

3.1. Datasets

CondensedMovies [1I] is a corpus gathering more than
1,270 hours of around two minutes clips, taken from
YouTube, from more than 3,600 movies. For each movie,
the dataset contains several clips. Each clip depicts a key
scene of the movie and comes with semantic description of
the scene, character face-tracks, and movie metadata.
CMDS8 (Condensed Movies Director 8) contains 24 hours
of clips from CondensedMovies. We pick all clips related
to eight directors.

3.2. Experimental Results

Metrics. For evaluation, we use: Precision, Recall and F1
score as the harmonic mean between precision and recall.
Quantitative results. We test two approaches: (i) training
from scratch, using random weight initialization; or (ii) us-
ing a model pre-trained on Kinetics-700 [4]. We also exper-
iment with two ResNet depths: 18 and 50. For comparison,
we also report results on two baselines: (a) a random classi-
fier, and (b) a random weighted classifier (i.e.: 1 chance out
of 8, weighted by the number of samples in the class.).
Table [ shows the results on CMDS. We observe that
ResNet outperforms both baselines, resulting in precision
and recall of around 50%. However, we make the follow-
ing two remarks. First, the shallowest architecture performs
better than the deepest. Second, the performance margin be-
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Figure 3. Frame layering pipeline. Raw frames are used to esti-
mate depths maps, which are converted into a discrete set of layers.

Raw frames Layer maps

tween scratch and pre-trained configurations is small. Both
remarks are in contrast to the observations of the state of
the art, where deeper models outperform shallow ones (e.g.,
as in [[7] for HMDB-51 [13]]) and using models pre-trained
on Kinetics [4] doubles the performances. The first remark
shows that probably there are not enough training data; the
second shows that this type of models with pre-training on
action datasets are not optimal for director classification,
thus revealing the need for more elaborate methods.
Feature visualization. To have an idea of criteria learned
by the network, Figure [2] displays the t-SNE [8]] visualisa-
tion of the CMDS test set. For each sample, we extract vi-
sual features learned by the ResNet-18 pre-trained on Kinet-
ics 700. From this visualisation, we distinguish five clusters
and characterize them by examining their movie character-
istics: each cluster gathers movies from the same decade or
in black and white. This would suggest that, using only raw
frames, the network learns low-level visual features such as
the amount of blur, that highly characterizes the technical
evolution of the camera over the decades (film in contrast
with digital). It requires further investigation.

Discussion. Our findings show that pre-training on large
action datasets like Kinetics [4]] is not necessarily suitable
for style analysis. Possible solutions for this would be to
either pre-train on movie datasets or to use other inputs. As
the dataset is not large enough, models cannot extract eas-
ily all the information. While this lack of data is a possi-
ble reason of failure, our hypothesis is that the provision of
higher-level features (which experts use to perform director
classification) shall be explored.

4. High-Level Features in Movie Style Analysis

We propose the study of seven high-level features for
film style understanding in cinematography, grouped into
three categories. We describe our proposed pipelines for
two of them: frame layering and camera motion detection.

(a) Character-based features enable tracking what the di-
rector is focusing on, as characters are very often the cen-
tre of the story and of the visual content. We extract two
character-based features: character segmentation using
Detectron2 [24] and pose estimation using DOPE [23].
Both are tracked along each shot with a Kalman filter com-
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Figure 4. Camera motion detection pipeline. Consecutive raw
frames are used to compute forward and backward optical flows
that are converted to angle grids. Once flattened, angle grids are
fed to a MLP that learns the camera motion.

bined with the Hungarian algorithm [2]].

(b) Composition-based features are essential to under-
stand the aesthetics of directors. In particular, the frame
composition is closely related to the complexity of a mise-
en-scene. We extract three composition-based features:
depth estimation using [15], focus estimation with [6]
and frame layering. Further, we propose a frame layer-
ing method that splits a frame into depth layers to retrieve
various frame composition levels, e.g. foreground, middle-
ground or background.

(c) Camera-based features are key markers of cinemato-
graphic style. They define characteristic camera behaviour
in relation with scene contents. Moreover, the camera is
the eye of the audience. Therefore, we argue that under-
standing the camera behaviour helps to better understand
the director’s intentions. We extract two camera-based fea-
tures: camera pose estimation in the toric space from [11]]
and camera motions. For the camera motion detection, we
build our own model that learns six camera motion types.

Frame layering has never been exploited before, even
though it is a spontaneous process humans do when look-
ing at an image. In this work, we propose a frame lay-
ering approach that extracts a layer map where pixels are
grouped into depth layers (e.g. foreground, middleground,
background). Figure[3|shows our extraction pipeline. Given
a sequence of consecutive frames, we first compute their
depth maps using [[15]]. We then cluster pixels through a K-
means. The optimal number of clusters is computed with
the elbow method [[12]. To improve the temporal smooth-
ness of computed maps (NN-based depth estimators are in-
herently noisy), we smooth the optimal number of clusters
for consecutive depth maps using a max pooling sliding
window. In the end, we compute a final cluster map using
the smoothed optimal number of clusters.

Camera Motion is the way the camera moves in space and
creates dynamics within consecutive frames. Typical ex-
amples encompass static shots, horizontal movements (pan
and truck), vertical movements (boom and tilt), depth move-
ments (zoom, pull-out and push-in) and rotational move-
ment (roll). In this work, we propose a pre-processing
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Figure 5. Examples of frame layering. (top) Raw frames,
and (bottom) layer maps with overlayed character segmentation
masks. Our pipeline (a), (b): correcly predicts the number of lay-

ers and is consistent over time. (c), (d): incorrectly predicts a new
layer (purple) when a character moves towards the background.

and detection pipeline, learning to differentiate among them
(Figure[). Given two consecutive frames, we first compute
their forward and backward optical flows using [21]]. Then,
we compute the flows’ angles, and average pool them to ob-
tain the angle grids. We finally flatten and concatenate the
backward and forward angle grids and feed them to a two-
layer MLP that learns to classify them. Behind this detec-
tion, we aim to estimate the extrinsic 6 degrees of freedom
of the camera. Note that at training we merge some motions
into more general groups (e.g. horizontal, vertical, depth
motions). In practice, it is difficult to distinguish them.

5. Experiments

5.1. Experiments on Frame Layering

Quantitative results. Figure [5|displays some results when
applying our pipeline on several video sequences. (a, b)
show an example where layering is successful, i.e., with the
right number of clusters and good temporal continuity. (c,
d) show a failure case: while the central character is transi-
tioning from foreground to background, our method incor-
rectly generates a new layer (in purple, top right of layer
map (d)). We argue that this lack of robustness results from
both the noisy depth map output and the way we choose the
number of clusters (which seems suboptimal). Overall, both
examples show the efficacy of our layering method for un-
seen and challenging (dark as in (a), cluttered in (c)) scenes.

5.2. Experiments on Camera Motion Detection

MotionSet is a dataset we created with camera motion clips
from YouTubeEl We split each shot into sub-clips with
single camera motion, resulting in 75 clips with motions:
static, horizontal (pan and trucking), vertical (boom, tilt),
depth (zoom, pull out and push in) and rotational (roll).

Quantitative results. We train and test our camera motion
detector on MotionSet. Table[2]reports the results. For com-
parison, we also evaluate the Random and Weighted Ran-
dom baselines. Our model significantly outperforms both

Ihttps://youtu.be/GbnYBmgBbKA

Figure 6. Examples of camera motion detections. (a) Correctly
predicted zoom motion. (b) Failure case of a mixed horizontal and
vertical motion incorrectly predicted as zoom.

Table 2. Motion classification results.

Method Precision Recall F1

Random 21.26 21.70  19.62
Weighted Random 18.62 18.49 18.52
Ours 98.47 95.50 96.81

baselines, and it reaches high performances, i.e., 96.81% of
F1 score and almost perfect precision 98.47%. This shows
that for simple and short sequences, our model correctly
recognizes the camera motions.

Qualitative results. Figure [] displays some results when
applying our detector on several video sequences. (a) shows
an example of zoom camera motion correctly predicted; (b)
shows a failure case, where a mixed horizontal and vertical
motion is incorrectly predicted as a zoom. We observe that
in most cases, the detector recognizes the motion correctly.
However, we are aware that our dataset is probably not di-
verse enough. In addition, when using our motion detection
in the wild, we observe that it is not robust to combined mo-
tion (e.g. mixing vertical with horizontal camera motion).
In this case, our model typically fails, most likely because
it is not trained with such challenging samples.

6. Conclusion

In this paper, we perform straightforward experiments on
director style classification, and show that the performances
are not satisfying when solely relying on raw frames. We
then propose and analyse a non-exhaustive list of high-level
features that we believe could improve such classification
tasks. We finally show the first results for frame layering
and camera motion detection, which seem promising for
cinematographic applications.

In the future, we plan to consider more features. For
instance, we could use audio-based features (e.g. active
speaker) or exploit soundtrack analysis. Finally, a longer-
term objective would be to explore latent representations
learnt by our models (i) to understand what they learnt and
which features are important; and (ii) to exploit these repre-
sentations for various applications to help filmmakers.
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