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Abstract

Speech-driven talking heads have recently emerged, en-
abling the creation of realistic and interactive avatars.
However, their real-world applications are limited, mainly
because current methods are either very high-fidelity but
slow, or fast yet temporally unstable. Towards address-
ing this issue, we create a robust and accurate lip-sync
method, GaussianFlameTalk, that can generate person-
specific avatars in real-time. Given a monocular video
of a person and a potentially independent speech audio
signal as input, our method generates temporally consis-
tent talking head videos in real-time. Our pipeline invokes
3D Gaussian Splatting through a temporally consistent pa-
rameter mapping while also generating natural and believ-
able lip-sync. By leveraging Gaussian Splatting mapped
through 3D Morphable Models (3DMM), we introduce a
novel transformer-based method, FlameTalk, to derive lip
movement from audio. We directly predict the 3DMM pa-
rameters from audio, which are then used to control the
rendering of a 3D Gaussian avatar. Further, we intro-
duce a stability metric that can be used to quantify video
output instability (“wobbling”). Our experimental work
evidences state-of-the-art quantitative, qualitative perfor-
mance for generative talking heads.

1. Introduction
Generating talking head videos, driven directly by audio,
can be considered a highly valuable task with multiple prac-
tical applications [2, 5]. Whether in education, health care,
teleconferencing, or the film and entertainment industry,
high-quality personalized talking head avatars can serve as
an effective path for information transfer. For instance, AI-
driven virtual assistants for telemedicine can be useful in
assistive communications and post-stroke rehabilitation [1].
The canonical problem involves taking an input video of a
person, alongside an arbitrary audio speech signal, in order
to create a person-specific avatar, capable of generating out-
put video of the subject appearing to speak the audio content
(i.e. with visual lip-syncing that matches the input audio).

Figure 1. Our method can generate better lip movement, image
quality, sharper teeth (1st Row), and reduced wobbling, artifacts
(2nd Row) in comparison with GaussianTalker [7].

Previously proposed solutions for the problem involve
using GANs [3, 21, 32, 37], Diffusion models [6, 38,
40], NeRFs [16, 20] and, more recently, 3D Gaussian
Splatting [7, 8, 23, 29] based methods. However, there
remain some shortcomings that prevent rendering high-
quality video with photorealistic quality in real-time. The
Diffusion-based methods generally possess state-of-the-art
image quality, yet their inference time is slower than GANs.
NeRFs provide faster rendering than Diffusion, yet they do
not produce high quality image results, lacking details as
well as real-time inference speed. 3D Gaussian Splatting
(3DGS) has shown its efficacy in rendering high-quality im-
ages and videos. Taking advantage of this, there have been
some recent advances in using 3DGS for creating audio-
driven talking heads. Recent methods [7, 23] use a tri-
planar representation to merge the audio signals directly
into the learned 3DGS representation for rendering videos
on a frame-by-frame level. However, the generated videos
typically show flickering (or wobbling) in the facial region,
causing visible artifacts. Our experiments show that this
arises due to improper utilization of temporal information
from an input video, which manifests as either inaccurate
3D parameter tracking of RGB videos or frame-by-frame
generation, without any context of neighbouring frames.

To address this problem, we propose to process the au-
dio signal using transformers [36] in a manner that can cap-
ture long-range semantic information [26, 33, 35]. We use



the input video to learn a person-specific style embedding,
which can maintain the visual identity of the speaker. We
note that directly mapping an audio signal to rasterised pixel
space is difficult. We therefore alternatively opt to predict
the FLAME [24] parameters for a template mesh and then
use these to render the subject head via 3DGS [29]. We
transfer the lip movement generated from a transformer-
based network and head motion from the original video
through an optimized set of FLAME parameters, obtained
from training a GaussianAvatar. One aspect that is widely
assessed when judging the quality of generated videos is
that of stability [18, 31]. Intuitively; “the video is stable” is
a fairly subjective statement. Can we formalize it? To an-
swer this, we propose a stability metric for quantifying the
temporal stability of avatar reenactment videos. Our contri-
butions can be summarized as follows:
• We propose a novel component, FlameTalk, that uses a

transformer-based architecture to generate FLAME [24]
parameters directly based on input audio and a person-
specific template mesh.

• We introduce a metric to quantify the temporal stability
of synthetic talking head avatars.

We are the first to introduce a stable and complete talk-
ing head video generation architecture, GaussianFlameT-
alk, that predicts FLAME [24] parameters from audio and
use 3D Gaussian Splatting to achieve real-time wobble-
free video rendering, while maintaining photorealistic im-
age quality, lip sync, and motion transfer through an opti-
mized set of FLAME parameters in GaussianAvatar.

2. Related Work
2D Talking Head Generation Early 2D-image driven
based talking head methods focus on utilizing a single im-
age of a person and reenacting it with a driving video [3,
14, 19, 21, 32, 34, 37] using GANs [17]. Methods gener-
ally make use of an intermediate representation such as fa-
cial keypoints [3, 19, 21, 32, 37] or latent vectors [14, 34].
Some methods use audio to drive the motion, instead of
a video [27, 42, 45]. Their focus is on achieving accu-
rate lip-sync, while head-motion is generally hallucinated
or learned from the training dataset. Given the superior gen-
eration quality of Diffusion methods [13], in comparison to
GANs, some researchers recently employed them for face
reenactment [6, 38, 40]. These methods provide better im-
age quality, but the inference is typically slow and compu-
tationally expensive, making them infeasible for real-time
generation.

3D Talking Head Generation With the advent of 3D ren-
dering techniques such as NeRFs [25] and Gaussian Splat-
ting [22], researchers have developed various methods to
render talking heads. NeRF-based methods [16, 20] learn a
radiance field from multiple input frames of a single scene.

The volumetric rendering is performed based on the input
controlling signal e.g. audio. Gaussian Splatting uses Gaus-
sian optimization on input scene meshes. Rendering can be
conditioned directly on audio or driving video [7, 8, 23, 29]
for creating talking heads. Another line of work predicts
only 3D Morphable Model (3DMM) parameters, such as
FLAME [24], from an audio signal [12, 15, 30, 39]. We
take advantage of an intermediate 3DMM representation to
render Gaussian Splats in real-time.

3. Methodology

Our method is trained using an identity-specific video V =
{In} that consists of n frames. We train our model in a
two-stage setting: the first stage (Sec. 3.1) involves training
a person-specific Gaussian Splatting Model from the input
video V , and the second stage (Sec. 3.2) involves learning
an audio to FLAME [24] mapping that captures the speak-
ing style of a given identity. The final video is generated by
rendering the trained person specific Gaussian Avatar using
the audio-driven learned FLAME parameters.

3.1. Gaussian Avatar Renderer
GaussianAvatar [29] introduced a method to explicitly bind
Gaussians with the mesh triangles of FLAME [24] para-
metric model. The stability of the rendering process de-
pends heavily on the accuracy of the binding. In previ-
ous work, such as INSTA [47], bounding volume hierarchy
(BVH) [11] drives a nearest triangle search where warping
leads to flickering artifacts. GaussianAvatar [29] is alterna-
tively agnostic to the inaccuracy of input tracked meshes
by allowing the back-propagation of positional gradients
for each triangle. The consistent binding between Gaus-
sians and mesh triangles, regardless of pose or expression,
allows fine-tuning of FLAME parameters. Along with the
optimization of Gaussian splats parameters for position and
scaling, FLAME parameters (translation, rotation, and scal-
ing) were also optimized during training. This plays a cru-
cial role in stabilizing the output of rendering, as it mit-
igates misalignment between the meshes and Gaussians.
We incorporated an identical Gaussian-based head model-
ing, where we replace the original tracked FLAME param-
eters with the optimized parameters obtained after train-
ing a person-specific avatar, to generate stable talking head
avatars.

3.2. FlameTalk
We use FLAME [24], to map from an audio signal to fa-
cial motion. FLAME uses a set of disentangled parameters
for controlling the identity, expression, and pose. These
parameters are then used to generate a full 3D head mesh
through trained GaussianAvatar. Distinct from previous
work [15, 39], which operates directly on the full 3D head



Figure 2. We introduce GaussianFlameTalk, which comprises of FlameTalk and Gaussian Avatar Renderer. We first generate meshes from
an input video using VHAP [28] tracking. Given an input audio and a template mesh, FlameTalk uses a transformer-based architecture
with a frozen Wav2Vec 2.0 [4] encoder. It learns long-term audio context and maps it directly to the 3D mesh by predicting FLAME [24]
parameters. The generated parameters are used to render a person-specific GaussianAvatar [29], trained using the input video.

meshes by predicting triangle deformations or vertex posi-
tions, we take advantage of the disentangled FLAME repre-
sentation to predict expression and pose parameters. By di-
rectly predicting FLAME expression parameters, we reduce
the complexity of our learning objective from explicitly pre-
dicting the spatial location of thousands of face vertices to
the prediction of fewer than one hundred parameters that
together define facial expressions and lip motion.

We design a transformer-based architecture to capture
long-range temporal information from the audio signal
about the context of the spoken sentence. To mitigate the
lack of diverse 3D audio-video datasets that contain 3D
mesh information, audio and visual signals, we instantiate
our encoder network using a pre-trained Wav2Vec 2.0 [4].
Wav2Vec 2.0 uses Temporal Convolution Layers, which en-
code audio signals into feature vectors. The model com-
prises of a stack of multi-head self-attention layers. We add
a linear projection layer on top of the encoder to convert the
output into a set of feature vectors. Similar to [15], we use
a Periodic Positional Encoding (PPE) to provide temporal
information to the decoder and a binary alignment mask to
avoid information-leak from future frames.

For a single identity m, let the input training set be given
by L = {A,M1:T

gt , Nm}, where gt represents ground truth,
M1:T

gt is a sequence of meshes for T frames and A is an
audio signal from the ground-truth video corresponding to
those frames. Nm represents a neutral template mesh for
the given identity. Each input training set is generated by
processing a video consisting of T frames using the VHAP
tracker [29] to generate ground truth meshes M1:T

gt and neu-
tral template mesh Nm. Our objective is to predict a se-
quence of meshes M1:T

pred, given audio and neutral template
mesh, such that: FlameTalk(A,Nm) = M1:T

pred ≈ M1:T
gt .

The audio signal A is processed through the transformer
encoder and a linear projection layer to generate audio fea-
tures C1:T . For a given frame t, the transformer encoder
ingests audio for frames {1, . . . , t} and uses a linear projec-
tion layer to generate Ct. The predicted audio features are
passed to the multi-head attention block of the transformer
to obtain the latent vertex offsets O1:T

v for each frame. An
identity-specific template mesh, which is an average of all
the meshes obtained through video tracking, is encoded
through a Style Encoder network, to obtain an identity em-
bedding S. Predicted latent vertex offsets Oi

v for frame i
are linearly combined with identity embedding as:

Oi
sv = S +Oi

v, i ∈ {1, . . . , T}. (1)

These style-conditioned latent embeddings O1:T
sv are

then processed by a motion decoder, which comprises a
set of linear layers that map them to a low-dimensional
FLAME parameter space, to obtain a 3D mesh representa-
tion. By performing this process for each frame i, we obtain
a predicted mesh sequence M1:T

pred.

Toward achieving accurate lip motion and jaw movement
prediction, we isolate the parameters from the FLAME rep-
resentation that are responsible for jaw movement. We
use these to define an augmented ground-truth mesh, Mgt′

driven by FLAME parameter subset, and calculate a loss as
the difference, in vertex space, between augmented ground-
truth mesh and our predicted mesh per frame. The remain-
ing FLAME parameter values, used to define the ground-
truth mesh, are instantiated using the neutral template mesh,
for every frame. The model is trained end-to-end using an
L2 loss between the ground-truth and predicted meshes in



Paper Self-Reenactment Cross-Reenactment
PSNR↑ SSIM↑ LPIPS↓ Sync↑ Stability↓ Sync↑ Stability↓

IPLap [44] 29.0412 0.9462 0.0340 3.902 0.6633 3.324 0.6856
EDTalk [34] 26.9461 0.8626 0.0486 7.144 0.7802 6.982 0.7931

MimicTalk [41] 23.8775 0.8092 0.0735 5.446 0.8824 5.286 0.9227
GaussianTalker [7] 27.6079 0.9352 0.0451 5.346 1.7622 5.042 1.8745

TalkingGaussian [23] 27.3053 0.9335 0.0342 6.422 1.7183 6.146 1.8803
GaussianFlameTalk 29.1233 0.9477 0.0338 6.528 0.6201 6.122 0.6836

Table 1. Quantitative Comparison under Self-Reenactment and Cross-Reenactment. Our method, GaussianFlameTalk, achieves better
results in terms of stability, realism and picture quality, and achieves comparable results for lip-sync with current state-of-the-art methods.

vertex space as follows

Lmesh =

N∑
n=1

(
T∑

t=1

∥∥M t
gt′ −M t

pred

∥∥
2

)
. (2)

During inference, FlameTalk ingests a neutral mesh and
audio signal in order to predict a sequence of animated
3D facial meshes in FLAME parameters space. The pre-
dicted FLAME parameters are used to drive the motion of
a person-specific avatar, which we instantiate in this work
using GaussianAvatar [29], resulting in generating an audio
driven talking head.

3.3. Quantifying temporal consistency

The considered existing works routinely generate talking
head videos by posing video rendering as a set of, per-
frame, independent tasks. We observe that this typically
leads to poor temporal consistency in the output in the form
of unnatural wobbling, aberrations, and face oscillations.
Towards quantifying the problem, we adopt a strategy to
measure the temporal smoothness of a given video.

We first select a video (ground-truth) and accompanying
audio sample from the dataset [43]. We proceed to render
a new talking head video using the original audio signal.
Towards defining a robust evaluation protocol, we detect
and track facial key points [46] on the nose, as these points
are largely unaffected by jaw movement and expression
changes. The time-domain signal, provided by these points,
can then be compared between the generated and ground
truth video frames. We observe that high-frequency wob-
bling and rapid oscillations are challenging to detect using
keypoint comparisons alone, and adopt a hybrid approach
by additionally performing a Fast-Fourier-Transform (FFT)
analysis to identify frequent and uneven oscillations.

Our hybrid approach entails, for a given video, taking
an average of the mean motion difference Md, variability
in motion magnitude Vm, and high-frequency power Hf .
Each term is normalized by its respective maximum values
across a given sequence of input frames. Our stability score
is calculated by taking the average of these values, given by:
Stability score = (Md + Vm +Hf )/3

4. Experiments
Quantitative Evaluation We evaluate the performance
of our model on two tasks: self-reenactment and cross-
reenactment. In self-reenactment, we extract the last 30 sec-
onds of the video and treat it as a test set. We train on the
remaining video segment. For cross-reenactment, we use
synthetically generated audio from a text-to-speech model1

so that the audio sample has no identity information. We
compare our method with state-of-the-art Gaussian Splat-
ting [7, 23], GAN [34, 44] and NeRF [41] based meth-
ods. To evaluate self-reenactment, we use PSNR, SSIM,
and LPIPS. We calculate the Sync confidence score [9, 10]
and Stability score for both self-reenactment and cross-
reenactment. Ou evaluation shows improvement over the
state-of-the-art (Tab. 1). For perceptual metrics, Gaussian-
FlameTalk performs better than NeRF and Gaussian-based
methods. IPLap [44] gives comparable visual results, how-
ever, it is slower during inference. GaussianFlameTalk has
lower, but comparable, lip-sync accuracy with EDTalk.

Qualitative Evaluation Fig. 1 shows visual comparisons
of method performance. GaussianTalker and TalkingGaus-
sian show poor lip sync quality, lower lip openness, and
visual artifacts. They also show a lot of wobbling in the
generated videos, mainly due to the lack of long-term tem-
poral information and improper tracking of 3D parameters
during training. Our method generates stable talking head
videos, with qualitative imagery results that align with the
relative quantitative metric improvements.

5. Conclusion
We introduce generate photo-realistic wobble-free 3D talk-
ing heads in real-time. Our pipeline improves temporal sta-
bility via a transformer that captures semantic information
and long-range dependencies from the driving audio sig-
nal and introduce a stability metric to quantify the improve-
ment. We report improved quantitative and qualitative per-
formance over the state-of-the-art, showing our proposed
method has potential utility in practical applications requir-
ing both temporal stability and real-time inference.

1https://elevenlabs.io/
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[32] Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov,
Elisa Ricci, and Nicu Sebe. First order motion model for
image animation. In Conference on Neural Information Pro-
cessing Systems (NeurIPS), 2019. 1, 2

[33] Wenfeng Song, Xuan Wang, Shi Zheng, Shuai Li, Aimin
Hao, and Xia Hou. Talkingstyle: personalized speech-driven
3d facial animation with style preservation. IEEE Transac-
tions on Visualization and Computer Graphics, 2024. 1

[34] Shuai Tan, Bin Ji, Mengxiao Bi, and Ye Pan. Edtalk: Effi-
cient disentanglement for emotional talking head synthesis.
In European Conference on Computer Vision, pages 398–
416. Springer, 2025. 2, 4

[35] Balamurugan Thambiraja, Ikhsanul Habibie, Sadegh Aliak-
barian, Darren Cosker, Christian Theobalt, and Justus Thies.
Imitator: Personalized speech-driven 3d facial animation. In
Proceedings of the IEEE/CVF international conference on
computer vision, pages 20621–20631, 2023. 1

[36] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017. 1

[37] Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot
free-view neural talking-head synthesis for video conferenc-
ing. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2021. 1, 2

[38] Huawei Wei, Zejun Yang, and Zhisheng Wang. Aniportrait:
Audio-driven synthesis of photorealistic portrait animation.
arXiv preprint arXiv:2403.17694, 2024. 1, 2

[39] Jinbo Xing, Menghan Xia, Yuechen Zhang, Xiaodong Cun,
Jue Wang, and Tien-Tsin Wong. Codetalker: Speech-driven

3d facial animation with discrete motion prior. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 12780–12790, 2023. 2

[40] Mingwang Xu, Hui Li, Qingkun Su, Hanlin Shang, Liwei
Zhang, Ce Liu, Jingdong Wang, Yao Yao, and Siyu Zhu.
Hallo: Hierarchical audio-driven visual synthesis for portrait
image animation. arXiv preprint arXiv:2406.08801, 2024. 1,
2

[41] Zhenhui Ye, Tianyun Zhong, Yi Ren, Ziyue Jiang, Jiawei
Huang, Rongjie Huang, Jinglin Liu, Jinzheng He, Chen
Zhang, Zehan Wang, et al. Mimictalk: Mimicking a per-
sonalized and expressive 3d talking face in minutes. Ad-
vances in neural information processing systems, 37:1829–
1853, 2024. 4

[42] Yue Zhang, Minhao Liu, Zhaokang Chen, Bin Wu, Yubin
Zeng, Chao Zhan, Yingjie He, Junxin Huang, and Wenjiang
Zhou. Musetalk: Real-time high quality lip synchorization
with latent space inpainting. arxiv, 2024. 2

[43] Zhimeng Zhang, Lincheng Li, Yu Ding, and Changjie
Fan. Flow-guided one-shot talking face generation with
a high-resolution audio-visual dataset. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3661–3670, 2021. 4

[44] Weizhi Zhong, Chaowei Fang, Yinqi Cai, Pengxu Wei,
Gangming Zhao, Liang Lin, and Guanbin Li. Identity-
preserving talking face generation with landmark and ap-
pearance priors. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR),
pages 9729–9738, 2023. 4

[45] Yang Zhou, Xintong Han, Eli Shechtman, Jose Echevar-
ria, Evangelos Kalogerakis, and Dingzeyu Li. Makelttalk:
speaker-aware talking-head animation. ACM Transactions
On Graphics (TOG), 39(6):1–15, 2020. 2

[46] Zhenglin Zhou, Huaxia Li, Hong Liu, Nanyang Wang, Gang
Yu, and Rongrong Ji. Star loss: Reducing semantic am-
biguity in facial landmark detection. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15475–15484, 2023. 4

[47] Wojciech Zielonka, Timo Bolkart, and Justus Thies. Instant
volumetric head avatars. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 4574–4584, 2023. 2


	Introduction
	Related Work
	Methodology
	Gaussian Avatar Renderer
	FlameTalk
	Quantifying temporal consistency

	Experiments
	Conclusion

