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Figure 1. Teaser – our model jointly handles virtual try-on and try-off with a single architecture. It achieves high-quality results while
maintaining robustness to various human poses, garment categories, and image layouts.

Abstract

We propose a unified framework capable of performing
both virtual try-on and virtual try-off within a single dif-
fusion transformer. By jointly learning these two comple-
mentary tasks, our approach enhances the garment–target
correspondence—a key challenge in virtual try-on. This is
achieved through a carefully designed token concatenation
structure, which allows spatially aligned garment and per-
son images to be encoded and reasoned about jointly. Re-
markably, our unified model achieves state-of-the-art per-
formance on both VTON and VTOFF benchmarks, surpass-
ing prior methods that were specialized for each task.

1. Introduction & Related work

Virtual try-on (VTON) is a generative task that aims to
realistically transfer a given garment onto a person im-
age. Early methods were primarily based on GAN-based
approaches [1, 4, 8, 16, 19, 28, 30, 33], making notable
progress in generating plausible try-on results. However,
these models often struggled to preserve fine garment de-
tails and to produce high-quality, photorealistic images.

Since then, a number of studies [2, 5, 6, 9, 14, 21, 31, 34,
35] based on diffusion models [7, 11, 23, 24] have brought

a significant leap in the performance of virtual try-on sys-
tems, particularly in terms of photorealism and garment fi-
delity. Among them, several approaches [14, 21, 29, 35]
that incorporate an auxiliary reference network and lever-
age its intermediate features through mutual self-attention
mechanisms. Although they have shown superior garment
preservation, these approaches introduce computational and
memory overhead and the domain gap between noisy latent
and reference feature leads to suboptimal results.

More recently, a few studies [6, 13] have proposed a
simple yet effective approach that spatially concatenates the
conditioning image with the input, allowing the model to re-
construct both the target and the conditioning image jointly.
As this is effectively equivalent to token concatenation in
transformer, it avoids domain gaps and requires no addi-
tional networks, offering better memory efficiency. Despite
their efficiency, they suffer from a lack of correspondence
between the spatially concatenated garment and target im-
ages (Fig. 3). As a result, the model often relies on the
pretrained diffusion prior rather than faithfully preserving
the garment details, leading to reduced fidelity.

To address this issue, several previous works have at-
tempted to enhance alignment by introducing alignment-
specific loss functions [14, 34]. However, they often lead
to degraded image quality or unnatural synthesis results.
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Figure 2. Overview of the proposed model. It is capable of bidirectional virtual try-on/off with a unified transformer.

Figure 3. Attention map visualization. CAT-VTON shows dis-
persed attention unrelated to the query point, while our model
sharply focuses on the corresponding garment (or person) region.

To overcome these limitations, we propose a novel ap-
proach that fully exploits the capabilities of diffusion trans-
formers [22]: joint learning of virtual try-on (VTON)
and virtual try-off (VTOFF) within a single model. By
leveraging the structure of concatenation-based condition-
ing—where the garment and target images are spatially
combined—we design a unified training framework that en-
ables a single diffusion transformer to perform both VTON
and VTOFF within the same batch. This is achieved without
any additional networks or task-specific losses, while fully
preserving the original token layout and model architecture,
resulting in a highly efficient and scalable training process.

Unlike prior concatenation-based methods [6] that triv-
ially reconstruct the conditioning garment regions, our joint
training framework uses these regions as supervision tar-
gets in the VTOFF task, enabling the model to reconstruct
the garment from the target image. This dual-role usage
reduces redundancy and strengthens garment–target corre-
spondence through bidirectional learning.

Remarkably, our unified diffusion transformer achieves
state-of-the-art performance on both VTON and VTOFF
benchmarks, outperforming existing models [5, 6, 14, 25,

27, 34] optimized individually for each task. We provide
detailed analysis of the enhanced garment–target interaction
and validate the effectiveness of our approach through ex-
tensive qualitative and quantitative comparisons.

2. Method

2.1. Garment-target correspondence analysis.
In virtual try-on, accurately preserving the shape and de-
tails of the input garment on the target person is essential.
We analyze the attention maps of transformer to validate
garment-target correspondence (Fig. 3). When querying a
specific point on the garment or target image, we expect
the model to attend to a single, well-aligned location on the
corresponding image. However, we observe that the exist-
ing method [6] produces dispersed attention across multiple
regions, revealing its failure to capture one-to-one spatial
alignment between the two domains.

2.2. Try-On & Off via Unified Transformer

Bidirectional try-on/off. Instead of relying on auxil-
iary components, we propose a fundamentally different ap-
proach: training a single transformer to jointly perform
both VTON and VTOFF. Our method leverages the struc-
ture of concatenation-based conditioning, where both the
garment and target images are spatially combined in the in-
put. This formulation naturally enables bidirectional train-
ing—from garment to target (VTON) and from target to
garment (VTOFF). To implement this, we fix the relative
spatial positions of the garment and the person image and
vary the inpainting conditioning for each task. As a re-
sult, the unified model can generate the garment condi-
tioned on the target, and vice versa, effectively reinforcing
garment–target correspondence through joint learning. No-
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Figure 4. Qualitative comparison of try-on results with baselines: VITON-HD, DressCode, and in-the-wild (top to bottom).

tably, our method does not introduce any additional visual
tokens, external modules or auxiliary loss functions.

Pipeline. Let Xg ∈ RH×W×3 denote the standalone gar-
ment image and Xp ∈ RH×W×3 the target person im-
age. We construct the input by concatenating the two im-
ages along the horizontal axis to form the full image, i.e.,
X = [Xg | Xp] ∈ RH×2W×3. Task-specific inpainting re-
gions are defined using a binary mask M ∈ {0, 1}H×2W ,
which is applied in the image space prior to encoding. For
the try-on task, the mask is defined as M = [0 | Mon],
where Mon masks out the garment region in the person im-
age Xp while leaving the garment image Xg unmasked.
For the try-off task, the mask is set to M = [1 | 0], masking
the entire garment image while keeping the person image
unmasked. We then apply the mask to obtain the masked
image, Xmasked = X⊙ (1−M).

Our architecture is based on a latent diffusion model [7,
15], where all denoising operations are performed in the la-
tent space. The full and masked images are encoded into
latent representations via a frozen encoder E , yielding z =
E(X) and zc = E(Xmasked). A task token τ ∈ {τon, τoff}
is used to distinguish between the try-on and try-off modes

VITON-HD [4] DressCode [20]

LPIPS↓ SSIM↑ FID↓ KID↓ LPIPS↓ SSIM↑ FID↓ KID↓
StableVITON [14] 0.084 0.867 6.85 1.255 0.107 0.905 4.48 1.530
OOTDiffusion [29] 0.096 0.851 6.52 0.896 0.073 0.898 3.95 0.720
IDM-VTON [5] 0.079 0.881 6.34 1.322 0.048 0.923 3.80 1.201
CatVTON [6] 0.097 0.869 6.14 0.964 0.071 0.901 3.28 0.670
Leffa [34] 0.081 0.872 6.31 1.208 0.060 0.911 3.65 0.709

Ours (w.o. dual) 0.079 0.868 5.80 0.618 0.052 0.910 3.04 0.565
Ours 0.073 0.879 5.52 0.406 0.045 0.920 2.91 0.381

Table 1. Quantitative comparison of try-on task. Bold and
underline denote the best and second best result, respectively.

and is passed to the transformer as an additional condition.

Training strategy. We adopt a flow matching formula-
tion [17], where the model learns a time-dependent velocity
field that transports samples from the data distribution to
noise along a continuous path. Let z0 be a data latent and
z1 ∼ N (0, I) be a sampled noise latent. We define a tra-
jectory zt between them and train the denoising model ϵ(·)
to predict the velocity dzt

dt at each intermediate point. The
unified training objective is given by:

Lunified = Et, z0, z1

[∥∥∥∥ϵ(zt, zc,M, τ, t)− dzt
dt

∥∥∥∥2
]
. (1)
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Figure 5. Qualitative comparison of try-off results with baselines:
VITON-HD (top) and in-the-wild (bottom).

TryOffDiff [25] TryOffAnyOne [27] Ours

FID↓ 28.25 25.20 10.87
KID↓ 11.42 6.98 2.57

Table 2. Quantitative comparison of try-off task.

In our case, we adopt the rectified flow formulation [7, 18],
where the trajectory is a straight line between z0 and z1, i.e.,
zt = (1−t)z0+tz1, ⇒ dzt

dt = z1−z0. This simplifies
training by reducing the target to a constant displacement
vector, while aligning with the structure of rectified flows.
To enable task-specific adaptation without losing the pre-
trained DiT prior, we finetune only the attention modules
within each transformer block. This design is well-suited
for virtual try-on/off tasks, where accurate spatial reasoning
between garment and person is essential.

3. Experiments
3.1. Datasets and experimental setup
We evaluate our method on two standard benchmarks:
DressCode [20] and VITON-HD [4], using both qualita-
tive and quantitative metrics. Each dataset contains high-
resolution image pairs of in-shop garments and correspond-
ing person images. To assess generalization, we also
present qualitative results on in-the-wild images. All out-
puts are generated at a resolution of 1024× 768.

3.2. Qualitative comparison
Figure 4 shows qualitative comparisons between our
method and state-of-the-art approaches on the VTON task.
VTOFF results are provided in Fig. 5, using the same model
for both tasks. Our method generates more coherent and
photorealistic results across both VTON and VTOFF.

3.3. Quantitative results
We evaluate visual fidelity and structural consistency us-
ing standard metrics. For realism, we report Fréchet In-
ception Distance (FID) [10] and Kernel Inception Dis-

Figure 6. Jointly trained model attends more precisely to relevant
regions compared to try-on-only variant.

Training strategy # Params SSIM↑ LPIPS↓ FID↓ KID↓

Full 11.9B 0.875 0.081 6.35 0.886
Single DiT Blocks 5.38B 0.872 0.078 5.98 0.634
Attention only (ours) 2.69B 0.879 0.073 5.52 0.406
LoRA 359M 0.843 0.108 6.67 0.906

Table 3. Quantitative comparison of training strategies with vary-
ing trainable parameters on VITON-HD [4].

tance (KID) [3]. To assess structural consistency, we use
LPIPS [32] and SSIM [26]. As shown in Table 1, 2, our
model outperforms existing methods across most metrics.

3.4. Ablation study

Effect of dual-task training. To assess the benefit of joint
training, we compare our dual-task model with a try-on-
only variant. As shown in the last two rows of Table 1,
dual-task learning consistently improves performance. As
shown in Fig. 6, our model focuses more precisely on
the well-aligned corresponding regions, improving spatial
alignment.
Effect of trainable parameters. We compare training
strategies with different subsets of trainable parameters. As
shown in Table 3, our attention-only training achieves the
best performance among all methods, including full param-
eter training, single DiT block training, and low rank adap-
tation (LoRA) [12]. It effectively captures garment–person
interactions while minimizing training overhead.

4. Conclusion

Limitations and future work. While our model is capable
of producing photorealistic results by jointly learning try-on
and try-off through bidirectional attention, precise control
over the garment’s fit remains somewhat ambiguous due to
the lack of explicit structural or sizing information.

In future work, we plan to incorporate additional cues
such as body measurements or garment metadata to improve
controllability and personalization.
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