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Abstract

Personalized image synthesis has emerged as a pivotal ap-
plication in text-to-image generation, enabling the creation
of images featuring specific subjects in diverse contexts.
While diffusion models have dominated this domain, auto-
regressive models, with their unified architecture for text
and image modeling, remain underexplored for personal-
ized image generation. This paper investigates the poten-
tial of optimizing auto-regressive models for personalized
image synthesis, leveraging their inherent multimodal capa-
bilities to perform this task. We propose a two-stage train-
ing strategy that combines optimization of text embeddings
and fine-tuning of transformer layers. QOur experiments
on the auto-regressive model demonstrate that this method
achieves comparable subject fidelity and prompt following
to the leading diffusion-based personalization methods. The
results highlight the effectiveness of auto-regressive models
in personalized image generation, offering a new direction
for future research in this area.

1. Introduction

The rapid advancement of text-to-image generation mod-
els has revolutionized the field of computer vision, enabling
the creation of highly realistic and diverse images from tex-
tual descriptions. Among the various applications of these
models, personalized image synthesis—generating images
of specific subjects in new contexts—has garnered signif-
icant attention. This capability is particularly valuable for
applications in digital art, advertising, and virtual reality,
where the ability to seamlessly integrate personalized con-
tent into diverse scenes is crucial.

While diffusion models have been at the forefront of per-
sonalized image generation, auto-regressive models, which
employ a unified architecture for text and image modeling,
have not been extensively explored for this task. Auto-
regressive models [5, 6, 9-11] have demonstrated remark-
able success in text-to-image generation by predicting im-
age tokens sequentially. However, their potential for per-

sonalized image synthesis remains largely untapped. This
paper aims to investigate the adaptation of auto-regressive
models for personalized image generation.

We propose a novel two-stage training strategy that
firstly optimizes text embeddings and then fine-tunes trans-
former layers together. Our experiments on the Lumina-
mGPT 7B model [5] show that this approach outperforms
existing optimization-based techniques like Textual Inver-
sion [3] and shows comparable performance with Dream-
Booth [8] in terms of subject fidelity and prompt following.
The results underscore the potential of auto-regressive mod-
els in personalized image generation and pave the way for
future research in this domain.

This work explores the potential of auto-regressive mod-
els for personalized image synthesis, adapting them to meet
the specific demands of text-to-image generation. Our find-
ings suggest that auto-regressive models, when properly op-
timized, can achieve competitive performance in personal-
ized image generation, offering a promising alternative to
diffusion-based approaches.

2. Preliminaries

2.1. Personalizing Text-to-Image Models via Opti-
mization

Textual Inversion. Textual Inversion [3] proposes a per-
sonalization method by creating a new “pseudo-word” (e.g.,
S.) within the text embedding space of a text-to-image dif-
fusion model. Using just 3-5 images of a specific subject
provided by the user, this method optimizes the embedding
vector corresponding to the pseudo-word to represent that
subject. This word can then be used to compose natural
language prompts, such as “a S, on the beach”, to generate
personalized images in novel contexts.

DreamBooth. Instead of a “pseudo-word”, Dream-
Booth [8] opts to optimize a unique identifier “[V]” that
precedes the subject class (for example, “a [V] cat/dog/toy
on the beach”). This approach helps to link the prior knowl-
edge of the class with the subject, thereby reducing training
time. However, using the class name can lead to a grad-
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ual loss of the model’s broader semantic knowledge during
fine-tuning, a phenomenon known as language drift. To ad-
dress this issue, a class-specific prior preservation loss is
introduced to retain the model’s ability to generate diverse
instances of the class.

These optimization-based approaches are implemented
and proved to be effective on text-to-image diffusion mod-
els. They can effectively perform various personalization
tasks, including subject recontextualization, text-guided
view synthesis, and artistic rendering.

In this paper, we explore the adaptation of these
optimization-based personalization techniques to auto-
regressive models and offer insights into the finetuning of
auto-regressive models.

2.2. Text-to-Image Generation via Next-Token Pre-
diction

Auto-regressive text-to-image models generate images in
three steps. First, a tokenizer converts the input text into
a sequence of discrete tokens, which are transformed into
vector embeddings. These text embeddings, denoted as c,
are then fed into an auto-regressive transformer that outputs
logits I;. The logits are converted into probabilities where
the next image token x; is sampled. The newly sampled
token is concatenated with the preceding tokens to predict
the subsequent token. Finally, an image decoder translates

the complete sequence of tokens © = (1,2, ..., zr) into
image pixels.
Training objective. During training, the auto-

regressive transformer models the conditional probability
p(x: | x1,29,...,24-1,c) of the sequential tokens using
the standard next-token prediction objective. We denote
XTiot—1 = {T1,Z2,...,T¢—1} , the model predicts the next
token x; € V, where V' denotes the vocabulary. The loss
function f for a single prediction can be written as follows:

L(0) = f (ye,po (x4 | T1~t—1,0)), (D
po (Tt | 10t-1,¢) = Softmax(l;), 2)

where L(6) is the loss, parameterized by the model param-
eters 0 and loss function f. In image generation, we predict
the tokens from the image split of the total vocabulary. y;
represents the target label of the next token, which is de-
rived by tokenizing the ground-truth image associated with
the input text. f is cross-entropy loss.

3. Method

Personalizing a text-to-image diffusion model generally in-
volves two strategies. The first strategy is to associate a
unique text embedding with the subject. This text embed-
ding can either represent the subject as a whole or serve as
an adjective describing the subject class. However, because
the number of parameters for a text embedding is limited,

personalized images often struggle to capture all the essen-
tial features of the subject. To effectively embed the sub-
ject’s appearance in the model, fine-tuning of the model pa-
rameters is usually required. Figure | shows the overview
of our fine-tuning strategy.

In this section, we present our method for personalizing
an auto-regressive model and explain the rationale behind
our choices.
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Figure 1. Overview of Fine-tuning. We fine-tune a text-to-image
auto-regressive model using 3-5 input images, each paired with a
text prompt that includes a unique identifier and the subject class
name (e.g., “A photo of [V] dog”). The process involves two
stages: first, we fine-tune the text embedding for the identifier [V],
and second, we additionally fine-tune the transformer layers to en-
hance the model’s performance.

Token Embeddings

3.1. Optimizing Text Embeddings

We generally follow the DreamBooth [8] approach to op-
timize a text embedding for a specific subject. We intro-
duce a placeholder word [V], to represent the unique iden-
tifier of the new subject we wish to learn. The input text
that includes the identifier [V] and the subject class name is
then converted to tokens. We replace the embedding associ-
ated with the token for [V] with a new randomly initialized
embedding, denoted as v,.. With a small set of reference
images (e.g. 3-5) of the subject in various backgrounds
or poses, we optimize v, based on the cross-entropy loss
defined in Equation 1. For the input text, we use the tem-
plates provided by Textual Inversion [3], which contain neu-
ral context such as “A photo of [V] [class_name]”, “A ren-
dition of [V] [class_name]”. Our optimization goal can thus
be defined as follows:

v, = argmin f (v, po (21 | T10-1,0), V¢ ()

It is expected to encourage embedding v, to learn the com-
mon features in the reference images while discard elements
that are unique to each image, such as the background.



3.2. Fine-tuning Transformer Layers

We conduct experiments using the Lumina-mGPT 7B
model [5]. We have observed that the generated images fail
to accurately replicate the reference subject if we optimize
the text embeddings only. Additionally, when optimizing
the text embeddings on a single data point, the model does
not overfit; instead, after a slight decrease in the loss, it sta-
bilizes around a specific level. Given the limited capacity
of text embeddings, fine-tuning the auto-regressive trans-
former becomes necessary to effectively implant the subject
into the model’s output domain.

Two-stage training. DreamBooth [8] fine-tunes the layers
conditioned on the text embeddings and the diffusion UNet
simultaneously. In our experiments, we find that when fine-
tuning the text embeddings and transformer layers together,
the text embeddings cannot get fully trained. If we revert
to the original transformer layers during inference, the text
embeddings alone fail to convey any meaningful content.
To address this issue, we devise a two-stage training strat-
egy. In the first stage, we fully optimize the text embed-
dings, and in the second stage, we fine-tune the transformer
layers to maximize the subject fidelity. This two-stage ap-
proach is mutually beneficial: the first stage stabilizes the
training and reduces the effort needed in the second stage,
while the second stage compensates for any defects from
the first stage due to its inherent limitations.

4. Experiments

4.1. Dataset and Evaluation

We evaluate our model’s personalization capability on
Dreambench [8], which provides a dataset consisting of
30 subjects, each with 4-6 images. These subjects are di-
vided into two groups: 21 objects and 9 live subjects/pets.
Each subject is tested on 25 prompts, which include scenar-
ios such as re-contextualization, accessorization, and prop-
erty modification. Their purpose is to assess whether the
key features of the subject can be preserved under differ-
ent semantic modifications while the generated image ad-
heres to the prompt. Following Dreambench [8], we em-
ploy DINO [1] and CLIP-I [7] to assess subject fidelity, and
CLIP-T [7] to measure the prompt following. For evalua-
tion, we generate images using a fixed Classifier-free Guid-
ance of 4.0 and an image top-k value of 2000.

4.2. Quantitative Results

Table | presents the evaluation results of various models on
Dreambench [8]. By fine-tuning the auto-regressive model
of Lumina-mGPT [5] using our method, it outperforms
Textual Inversion [3], Re-Imagen [2], and zero-shot BLIP-
Diffusion [4] in both subject fidelity (Dino and CLIP-I) and
prompt following (CLIP-T). Additionally, it achieves com-
parable results to stable diffusion-based DreamBooth [8]

and fine-tuned BLIP-Diffusion [4] in DINO. Notably, our
method achieves the highest CLIP-T among all the mod-
els listed. These findings demonstrate that auto-regressive
models can be fine-tuned to incorporate new concepts with-
out compromising their original generation capabilities.

Method DINO1 CLIP-Ift CLIP-T T
Real Images 0.774 0.885 N/A
Textual Inversion [3] 0.569 0.780 0.255
Re-Imagen [2] 0.600 0.740 0.270
DreamBooth (Stable Diffusion) [8] 0.668 0.803 0.305
DreamBooth (Imagen) [8] 0.696 0.812 0.306
BLIP-Diffusion (zero-shot) [4] 0.594 0.779 0.300
BLIP-Diffusion (fine-tune) [4] 0.670 0.805 0.302
Ours (Lumina-mGPT [5]) 0.671 0.785 0.314

Table 1. Quantitative results comparison on Dreambench [8].
We show subject fidelity (DINO, CLIP-I) and prompt following
(CLIP-T) scores across different models. For all three metrics, the
scores range from O to 1, where a higher score indicates better per-
formance. The bold values highlight the highest score achieved.

4.3. Qualitative Results

In Figure 2 and Figure 3, we present qualitative generation
results of our model. The re-contextualization examples
demonstrate the model’s ability to accurately reproduce the
subject’s appearance while merging it into the new back-
grounds. Furthermore, the model can accurately modify the
color and shape properties of the subject, even in challeng-
ing cases such as “cube-shaped”. This indicates that the
model not only learns new concepts, but also effectively de-
composes and recomposes them with its prior knowledge.
In accessorization examples, the model can seamlessly in-
tegrate subjects with outfits, demonstrating its ability to un-
derstand the structure and meaning of the subject rather than
merely replicating its appearance. These results validate the
model’s strong ability to follow prompts and maintain high
subject fidelity, as reflected in the quantitative evaluation.

5. Conclusion

In this paper, we demonstrate the potential of auto-
regressive models for personalized image synthesis through
a two-stage training strategy, first optimizing text em-
bedding and then fine-tuning transformer. Our approach
achieves comparable subject fidelity and prompt following
to the state-of-the-art stable diffusion-based methods such
as DreamBooth [8]. However, auto-regressive models are
slow, taking minutes to generate images, and the fine-tuning
also requires 15-20 minutes, limiting real-time applicabil-
ity. Additionally, the ability to create personalized images
raises ethical concerns, such as misuse for misleading con-
tent, a challenge common to all generative models. Future
work should focus on improving efficiency, addressing ethi-
cal risks, and ensuring responsible advancements in person-
alized generative technologies.
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Figure 2. Qualitative results of personalizing objects, categorized by generative capabilities.
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Figure 3. Qualitative results of personalizing animals, categorized by generative capabilities.
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