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Abstract

Diffusion models have advanced text-to-image generation,
producing high-quality images from textual prompts. How-
ever, editing specific objects remains challenging due to the
need for precise modifications without affecting the over-
all scene. Text-driven methods often struggle with local-
ized edits, while interactive approaches require manual in-
put. We propose POEM (Precise Object-level Image Editing
from Text Instruction via MLLMs), a framework that lever-
ages multimodal large language models for fine-grained,
instruction-driven editing. POEM generates object masks
before and after transformation, guiding a diffusion-based
process for accurate localization and modification without
user input. To evaluate our method, we introduce VOCEd-
its, a benchmark based on PASCAL VOC 2012 with anno-
tated prompts and ground-truth transformations. Experi-
ments show that POEM improves precision and reliability
over prior methods without relying on manual effort.

1. Introduction
Diffusion models [27, 30] have significantly advanced high-
resolution text-to-image generation, producing realistic im-
ages from textual prompts. Beyond generation, image edit-
ing [15, 16] has emerged as a key application, enabling
users to modify images while preserving realism. A central
challenge in image editing is precise object-level manipu-
lation without disrupting global structure. While current
methods support global edits [2], fine-grained transforma-
tions with high spatial accuracy remain burdensome [13].

Broadly, image editing methods fall into two categories:
text-based instructional editing [2, 16, 17, 31] and image
interaction-based editing [4, 7, 12, 15, 18, 19, 22, 32, 36].
Text-based methods like InstructPix2Pix [2], modifies input
images based on a single edit prompt, making it efficient
and user-friendly. Even though these methods have shown
compelling results with global edits, they struggle with pre-
cise object-level shape transformations, often producing un-
intended global changes (Fig. 1, top). This is mainly be-
cause they purely rely on cross-attention text conditioning
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Figure 1. POEM. Existing text-based editing methods (top) strug-
gle with precise object-level edits. Interaction-based approaches
(middle) perform better but require manual user effort. Instead,
we propose (bottom) leveraging MLLMs to interpret text-based
prompts and automatically generate precise object masks and nu-
merical transformations to support image editing pipelines.

of a stable diffusion model [2, 16]. In contrast, interaction-
based approaches require users to provide additional guid-
ance through precise object masks [15, 19, 22, 36], ob-
ject modification shapes [7] or click and drag [4, 12, 18].
While these methods can localize edits accurately and im-
prove object-level editing, they demand manual effort, mak-
ing them less scalable (Fig. 1, middle).

To address these limitations, we introduce POEM
(Precise Object-level Image Editing via from Text Instruc-
tion via MLLMs), a novel framework that decouples vi-
sual reasoning from the editor to achieve fine-grained ob-
ject transformations (Fig. 1, bottom). Instead of requiring
users to provide precise image interactions, POEM lever-
ages Multimodal Large Language Models (MLLMs) to in-
terpret instructional prompts, generate precise object masks
before and after transformation, and provide image content
descriptions. Inspired by recent advancements in large lan-
guage models (LLMs) for complex reasoning [11, 35] and
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Figure 2. POEM Pipeline. Given an image and an edit prompt, we first use an MLLM to analyze the scene and detect objects. We then
refine detections and enhance object masks using Grounded SAM. A text-based LLM predicts the transformation matrix for the target
object. Finally, we perform image-to-image translation guided by the previous steps to generate the edited image.

MLLMs [9, 10, 23, 33, 34, 38, 39] for guiding diffusion
processes, POEM ensures object localization and transfor-
mation without manual annotation.

Given an input image and a user edit instruction, POEM
operates in two stages. In the reasoning stage, MLLMs gen-
erate structured editing instructions, including precise seg-
mentation masks that define object boundaries before and
after the transformation. These masks then guide the edit-
ing stage, where we apply controlled modifications in the la-
tent space of a pre-trained diffusion model. By constraining
the generation process with defined regions, POEM ensures
fine-grained control over object transformations, surpassing
previous text-based approaches in precision and reliability.

Existing datasets for image editing [37, 40] evaluate
generic editing instructions, but they fail to capture the nu-
anced variations and details that are critical when assess-
ing object shape edits. To address this gap and validate our
method, we introduce a novel dataset, VOCEdits, by aug-
menting the training set of PASCAL VOC 2012 [8] with in-
structional edits and precise ground-truth object masks for
before-and-after transformations. Our dataset enables a rig-
orous evaluation of our framework’s ability to handle pre-
cise edits, which existing datasets do not fully account for.

Experiments demonstrate that POEM achieves signifi-
cantly higher edit fidelity compared to existing text-based
editing approaches while requiring no additional user anno-
tations, unlike interaction-based methods.

Our contributions are two-fold: (a) we introduce a plug-
and-play reasoning block that interprets user edit instruc-
tions with high numerical precision, generating accurate ob-
ject masks and transformation matrices that enhance lay-
out modifications and mask-guided diffusion editing; (b)

we present VOCEdits, a novel dataset for evaluating precise
object-level edits, establishing a comprehensive benchmark
for detection, transformation, and synthesis tasks.

2. Method
Given an input image I and a textual instruction P , our ob-
jective is to produce an edited image Î reflecting precise
object-level transformations specified by P . To eliminate
manual interaction, we leverage reasoning capabilities of
Multimodal Large Language Models (MLLMs).

We propose POEM (Precise Object-level Image Editing
via MLLMs), a framework that decouples reasoning from
generation to enable fine-grained, automated edits.

POEM comprises five stages (Fig. 2): (a) Visual Ground-
ing: an MLLM receives I and P and is prompted to detect
all objects in the scene; (b) Detection Refinement: we re-
fine detections into accurate object segmentation masks; (c)
Edit Operation Parsing: we use an LLM that is instructed
to select the target object and compute the transformation
matrix; (d) Transformation: we apply the transformation
to the segmented object mask; (e) Edit-Guided Image-to-
Image Translation: given the initial input image and the
masks of the target object before and after the transforma-
tion, we generate the final modified image while preserving
spatial and visual coherence.
Visual Grounding. We use an MLLM to analyze I and
P via zero-shot prompting, detecting all objects N and re-
turning, for each object i ∈ N , a bounding box bi, a seg-
mentation point si, class ci, and a unique object ID ki.
The MLLM also generates structured textual descriptions:
scene layout (S), object relations (R), background appear-
ance (Pbg), and generation intent (Pg). S and R support



Edit Operation Parsing estimating the transformation ma-
trix, while Pbg and Pg support the Edit-Guided Image-to-
Image Translation maintaining background consistency and
apply object-specific edits.
Detection Refinement. Off-the-shelf MLLMs struggle to
produce precise object-bounding boxes when for visual
grounding [28]. To improve this, we use Grounded-SAM
(a combination of Grounding DINO [14] and SAM [20]) as
an open-set detector to obtain refined bounding boxes b′i and
segmentation masks mi for each detected object i.
Edit Operation Parsing. Given a prompt P and a set
of refined bounding boxes B′ = b′i | i ∈ N , our goal is
to estimate the transformation matrix T and the ID k of
the target object. However, when provided only with the
prompt P , the MLLM struggles to infer T directly due
to the lack of explicit scene information. For instance,
if P = "make the cat 100px wide", the required
transformation depends on the cat’s initial dimensions in the
image. If the cat is initially 50px wide, the scaling factor
should be 2; if it’s 25px, the factor should be 4.

To address this, we use a text-based LLM optimized for
mathematical reasoning to compute the transformation pa-
rameters. This separation allows for a more accurate esti-
mation of scale, rotation, and translation transformations by
explicitly incorporating object size information into the rea-
soning process. We use the input prompt P , the descriptive
prompts S and R, and the coordinates of the detections B′,
and we directly instruct the LLM to predict the unique ID of
the target object i∗ and a 3× 3 affine transformation matrix
T . To ensure correct parsing, we employ a structured format
where LLM matrices and object IDs are enclosed between
the unique tokens <MSTART>, <MEND>, <ISTART>, and
<IEND>. A regex-based parser extracts numerical values
enclosed within the matrix tokens, ensuring the retrieval of
transformation parameters.
Transformation. We select the segmentation mask mi∗
corresponding to the selected id i∗. Then, we perform im-
age wrapping using T on the binary mask mi∗ to generate
the transformed mask m̂i∗.
Edit Guided Image-to-Image Translation. We use the
masks mi∗ and m̂i∗ of the target object, and the descriptive
prompts Pbg and Pg from the first step to perform the im-
age synthesis and generate the final input image Î . We ap-
ply these edits during the inference of pre-trained diffusion
models without additional training or fine-tuning. Inspired
by [35], we perform object-level shape manipulations in the
latent space of diffusion models [30]. We use the region
of the mask m̂i∗ to define the area of interest, which is pro-
cessed through backward diffusion to obtain its latent repre-
sentation zrepos. The region of the initial mask mi∗ is reini-
tialized with Gaussian noise N (0, I), and the new latent is
blended into the image latent z as:

znew = z ⊙ (1−Mj) + zrepos ⊙ M̂j +N (0, I)⊙Mj . (1)

Table 1. Evaluation on VOCEdits. Methods are grouped accord-
ing to different steps of our pipeline, as described in the paper.

Method Average IoU (%)

Visual Grounding (BBox Prediction vs. GT)
InternVL-8B [3] 17.4
InternVL-72B [3] 47.1
QwenVL-7B [26] 55.5
QwenVL-72B [26] 54.8

Detection Refinement (Mask Prediction vs. GT)
QwenVL-7B + SAM [20] 27.3
QwenVL-7B + G-SAM [29] 84.2

Edit Operation Parsing & Transformation (Transformed Mask vs. GT)
(QwenVL-7B + G-SAM) + DeepSeek [5] 25.3
(QwenVL-7B + G-SAM) + QwenM [25] 49.2
Oracle Mask + DeepSeek [5] 29.5
Oracle Mask + QwenM [25] 55.6

Edit Guided Image-to-Image Translation (Detected Mask vs. GT)
(QwenVL-7B + G-SAM + QwenM) + SLD [35] 38.4
(QwenVL-7B + G-SAM + QwenM) + SLD + [24] 37.6

IP2P [2] 34.3
TurboEdit [6] 33.8
LEDITS++ [1] 35.0

A forward diffusion process refines the image, enhancing
realism and coherence in edited and surrounding regions.

3. Experiments
Sec. 3.1 introduces VOCEdits, a new dataset designed to
rigorously evaluate object-level image editing. Sec. 3.2–3.5
systematically analyze the design choices at each stage of
our pipeline. We also provide a comparison between POEM
and several state-of-the-art image editing methods [1, 2, 6].

3.1. VOCEdits Dataset
We present VOCEdits, a dataset for evaluating fine-grained
object-level image editing involving affine transformations:
flip, scale, rotation, translation, and shear. It is built upon
PASCAL VOC 2012 [8] for its high-quality instance seg-
mentation masks, enabling precise object-centric evaluation
on real-world images. We augment PASCAL VOC im-
ages with instructional prompts, ground-truth transforma-
tions, and object masks before and after editing. We use
images from the PASCAL VOC 2012 trainval segmentation
set, containing 2913 images and 6929 object instances. We
filter out images with multiple instances of the same class,
truncated objects, extreme object sizes, or masks extending
beyond image boundaries, resulting in 505 unique images.

To generate human-like edit instructions, we prompt
GPT-4o [21] to paraphrase default prompts, producing di-
verse descriptions. Ground-truth segmentation masks from
PASCAL VOC are then transformed using OpenCV for pre-
cise computation. Each image in the final set undergoes two
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Figure 3. Qualitative results. We compare POEM with state-of-
the-art image editing models across a diverse set of edit instruc-
tions, including geometric transformations (e.g., translation, scal-
ing), appearance changes, and combinations of both.

randomly selected transformations, each with three para-
phrased prompts, resulting in 3030 unique samples.

Our pipeline processes all samples excluding images
with more than five foreground objects due to limitations
in [35] when handling excessive occlusions. After filtering,
193 images and 921 samples remain for evaluation. Tab. 1
summarizes the results.

3.2. Visual Grounding
Evaluation protocol. To assess the quality of the detected
bounding box, we compute Intersection over Union (IoU)
with the ground truth. If the MLLM fails to detect a bound-
ing box, we fallback to a prediction covering the entire im-
age. For images with multiple objects, we evaluate only the
bounding box corresponding to the target object.
Comparison. We compare Qwen2.5-VL [26] and Intern-
VL-2.5 [3] in their 7B/8B and 72B variants. QwenVL-7B
yields an average IoU of 55.5%, outperforming InternVL.

3.3. Detection Refinement
Evaluation protocol. We assess the segmentation quality
by computing the IoU between the ground truth segmen-
tation mask of the target object and the corresponding de-
tected segmentation masks we obtain after the refinement
stage. For images with multiple objects, we evaluate only
the segmentation mask corresponding to the target object.
Comparison. We compare Grounded-SAM [29] to
SAM2 [20]. Grounded-SAM is prompted with the pre-
dicted object class ci while SAM2 is prompted with the pre-

dicted segmentation point si. G-SAM (Tab. 1) outperforms
SAM2 with average IoU improvement of 56.9%.

3.4. Edit Operation Parsing and Transformation
Evaluation protocol. To assess transformation accuracy,
we compute the ground-truth segmentation mask of the tar-
get object after applying the ground-truth transformation
matrix. We then measure the IoU between this mask and the
predicted transformed mask m̂i∗. This allows us to measure
implicitly the error between our predicted transformation
matrix T and the ground-truth one.
Comparison. We evaluate Qwen2.5-Math-7B [25], rely-
ing on tool integrated reasoning (TOR), and DeepSeek-R1-
Distill-Qwen-32B [5], relying only on internal knowledge.
Transformations on segmentation maks are performed with
OpenCV. We analyze two scenarios: (1) our pipeline’s
best models and (2) an oracle ground-truth mask, isolating
LLM-based reasoning effects. The first measures cumu-
lative error from imperfect segmentation, the second eval-
uates the transformations independently. QwenMath sur-
passes DeepSeek by 26.1% in average IoU on oracle masks.

3.5. Edit Guided Image-to-Image Translation
Evaluation protocol. We evaluate editing quality by mea-
suring alignment between the edited image and the edit in-
struction, rather than relying on image quality metrics like
FID. Specifically, we apply Grounded SAM to extract the
segmentation mask of the transformed object in the edited
image and compute its IoU with the mask obtained by ap-
plying the ground-truth transformation.
Comparison. We adopt Stable Diffusion v2.1 [30] as
the base model and follow latent-space editing strategies
from [35]. We also evaluate on a further refinement step on
the edited image with SDXL [24] to enhance visual quality.
Comparison to state-of-the-art. Fig. 3 presents a qualita-
tive comparison between POEM and state-of-the-art mod-
els, including IP2P [2], LEDITS++ [1], and TurboEdit [6].
The results demonstrate POEM’s more effective editing
ability. Tab. 1 provides quantitative results, where POEM
achieves a score of 38.4%, outperforming IP2P (34.4%),
TurboEdit (33.8%), and LEDITS++ (35.0%) by approxi-
mately 3%. These results underscore POEM’s superior per-
formance, delivering more precise edits and transformation
parameters that more accurately reflect user intent.

4. Conclusion
We presented POEM, a framework that combines MLLMs
and diffusion models for precise object-level image editing
from natural language instructions. By aligning semantic
reasoning with spatial control, POEM enables accurate ed-
its. We also introduced VOCEdits, a benchmark for evaluat-
ing such tasks. Experiments show that POEM outperforms
prior methods in precision and usability.
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