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Abstract

In this work, we introduce an unsupervised language-
only approach to automatically segment and identify steps
in instructional videos. Parsing a video into its steps has
several use cases - training video action recognition models
to recognize steps, creating visual summaries highlighting
relevant steps, identifying mistakes in steps of the video, and
retrieving/localizing steps in the video to name a few. Our
framework LUSE, zero-shot prompts a Large Language
Model (LLM) to extract steps from the transcript of a single
instructional video. Next, the steps across several videos of
the same task are consolidated to generate a general set of
steps for the task, via a second pass through the LLM, and
are then localized back in the transcript of each video. Ex-
isting datasets for steps rely on manual annotations which
are expensive to collect and oftentimes subjective. Our fully
automated approach overcomes these issues and generates
competitive quality step labels, as highlighted by our qual-
itative examples. Furthermore, we fine-tune a state-of-the-
art image captioning model on our generated steps to show
that the resulting output has better qualitative step descrip-
tions and denser coverage compared to existing manually
annotated datasets.

1. Introduction

Instructional videos, such as tutorials, how-tos, and
walkthroughs, are one of the most viewed types of videos on
the internet. The processing of these instructional videos,
such as understanding the task at hand, generating step la-
bels, and localizing them, can be extremely useful for a
variety of downstream tasks, such as video narration and
mistake detection. However, a large problem with instruc-
tional video datasets is that they are very costly and labor-
intensive to annotate. Datasets such as COIN, for example,
required each label to be looked over by 3 different humans,
and the final dataset of 11,000 videos is estimated to have
taken over 600 labor hours [15]. As a result, there is often an
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observed tradeoff between dataset size and annotation qual-
ity - many instructional video datasets are very small, and
larger ones have noisy or poor-quality annotations. This
raises the concern of scalability and annotation subjectiv-
ity, which will only become more important as more data is
needed for new models.

As a result, we wish to develop a more scalable and accu-
rate process for annotation. Our first goal is to (1) leverage
pre-trained GPT language models to automatically generate
steps from videos. We perform this without the need of hu-
man supervision by feeding the Automatic Speech Recog-
nition (ASR) transcripts for each video to our LLM. Next,
we group similar tasks together, and feed the sets of steps
into a second LLM pass in order to achieve step generaliz-
ability and reduce variance in our generated steps. We then
use Drop-Dynamic Time Warping (Drop-DTW [3]) to lo-
calize these generated steps back into the video, extracting
the corresponding timestamps for each step label.

Additionally, we also fine-tuned an existing image cap-
tioning model on our generated step labels. This allows us
to test the quality of our generated steps and to generate
steps on any new video, relying purely on the visual fea-
tures and not constrained by the availability of a transcript.
Qualitatively comparing the labels generated by fine-tuning
BLIP-2 with the ground-truth labels from COIN, we find
that step labels auto-generated by LUSE are far more nu-
anced and descriptive compared to the COIN ground-truth.

2. Related Work

2.1. Language models for Vision Language Tasks

Video-Language models map videos and language onto
a shared embedding space, and use it to perform a vari-
ety of tasks, such as action recognition, action retrieval,
and other downstream tasks. Recently, many such models
have leveraged Large-Language Models (LLMs) in their de-
sign, using frozen large language models to reduce compu-
tational costs. Some examples include BLIP-2 [6] and LaV-
iLa [16], which use LLMs to generate captions and dense
video narrations. Other models use Large Language Mod-
els to perform Visual Question Answering (VQA), such as



Figure 1: LUSE is a two-pass LLM approach for automatic step label generation for each task category. The first LLM pass extracts steps
from each video using its ASR transcript, and its output includes both main steps (yellow) and noise steps (gray). A second LLM pass
removes drops outliers and generalizes a new set of steps for each task category. Drop-DTW [3] is used to temporally align steps to video
and remove recurring outlier steps (i.e. advertisements, ending credits, etc.) common in online instructional videos. We use LUSE steps to
finetune video and image captioning models, without any narration/ASR inputs.

CodeVQA [14], which uses LLMs to generate code to an-
swer questions about videos. Our work is most similar
to previous attempts to discover steps without supervision
[1, 4, 5, 12, 11], but these are often confined to small-scale
datasets, which usually do not have the breadth of tasks that
larger datasets have.

2.2. Instructional Video Datasets

The collection of large-scale instructional video datasets
have been crucial in the development of models that learn
task structure and representations from videos, in addition
to the performance of various downstream tasks such as
step recognition, step forecasting, and mistake step detec-
tion. Datasets such as COIN [15], CrossTask [17], and
HowTo100M [9] are more general in terms of task content,
while other datasets such as Assembly-101 [10] and Ikea
ASM [2], contain task sets that are more domain-specific,
such as furniture assembly.

3. Unsupervised Step Extraction Using LLMs

In this work, we introduce an approach to automatically
detect steps in instructional videos. We adopt a two part ap-
proach - first, we use a Large Language Model (LLM) to
extract steps from an instructional video transcript. In addi-
tion, we localize each step back into the video using drop-
dynamic time warping (Drop-DTW) [3], extracting the start
and end timestamps for each step. Finally, using our lo-
calized steps as ground-truth annotations, we fine-tune a
video/image captioning network to generate steps for any
given video clip. This approach allows us to generate steps
without the need for human supervision. Moreover, it al-
lows our labels and subsequent captioning/narration to not

be confined by the often rigid set of step labels present in
dataset annotations.

3.1. Generating Steps From Transcript

The top tab of Fig. 1 displays our step generation pro-
cess using a two-pass approach to prompt our LLM. For
each video, we first take the noisy ASR transcript and pre-
process it. We then pass the processed transcript ASRi to
an LLM and prompt it to identify the key steps Si. How-
ever, the steps generated in this fashion still display large
variance across different videos, even for videos of the same
task category. For example, making Turkish Coffee is very
different from making espresso or cold brew, causing the
generated sets of steps to be different as well. Moreover,
there are inherent variations in videos. For example, some
videos in the make coffee category may have grind the cof-
fee beans described verbally as a step but not show it on
camera, whereas other videos do. As a result, we perform a
second LLM pass to reduce some of this variance and to get
a more generalizable set of steps for each type of task. We
first group the videos by their task type, such as make coffee,
tie a tie, or install curtains. We then collect the previously
generated steps for each video in the group, and prompt the
LLM for a generalized set of steps Gi given all the sets of
steps for the same task. These sets of steps generated by the
second LLM pass are the general set of steps that we will
be treating as ground-truth step labels.

3.2. General Step Localization and Annotation.

After generating a set of generalized steps Gi for each
task category, we localize them back into the video, both
to see if they are valid and as a preprocessing method for
other downstream tasks. To do this, we take the ASR



Figure 2: Generalization and Temporal Localization: The top row displays Turkish coffee making video frames and the bottom row
displays pour-over butter coffee frames. LUSE leverages 2-LLM passes to automatically extract and generalize steps to any coffee recipe,
while still being object specific and action specific.

(Automatic Speech Recognition) transcript of each video
ASRi and match them to the generated steps, after em-
bedding them using a pre-trained sentence embedding mod-
ule. To align our generated steps with the transcript, we use
Drop-Dynamic Time Warping (Drop-DTW) [3], which is an
algorithm for sequence-to-sequence alignment of variable
length sequences. Drop-DTW provides unique advantages
over normal Dynamic Time Warping because of its ability
to drop outliers, which is especially useful in our context.
This is because instructional videos often contain segments
that do not directly correspond with a step. For example,
many videos have a lengthy introduction where the author
talks about the inspiration for their recipe, or segments in
the middle where the author goes on a tangent and tells a
personal story. Drop-DTW allows us to identify and drop
these outliers, which allows us to achieve cleaner and more
precise step localization.

3.3. Video and Image Finetuning

After we generate step labels and localize them, we treat
them as new ground-truth annotations. We then use these
new annotations to fine-tune the video captioning model
TimeSFormer [8], which is pre-trained on HowTo100M [9].
This model takes a video with temporal segments as in-
put and outputs classified labels to the nearest LUSE-COIN
(generated) label. We then test our fine-tuned TimeSFormer
model by segmenting our input video into 10-second clips
and inferring the label for each clip.

To eliminate the need for pre-segmenting our videos, we
also test LUSE annotations using a single-image captioning
model so that we can operate on a frame-level. We chose
to use the BLIP-2 image captioning model [6] that was pre-
trained on COCO [7] for captioning, and fine-tuned it on
our LUSE-generated annotations for the COIN dataset. We
sample captions at 1 FPS and randomly pick a caption in
every 10 second interval to represent the final step output.

4. Experiments
We evaluate LUSE-generated steps against existing

COIN annotations. We do this by fine-tuning the
video-language models BLIP-2 [6] and distant-supervision
TimeSFormer [8] using our generated step annotations.

Because our LUSE labels are different from the COIN
labels, we use MPNet [13] to convert our generated LUSE
labels to their closest embedded matching COIN labels. To
do this, we first embed both the generated labels and the
COIN labels using MPNet. We then calculate cosine simi-
larities to select the COIN label with the highest similarity
score.

4.1. Qualitative Comparison

Generalization and Temporal Alignment. We show
two versions of a coffee making task in Fig. 2 to demon-
strate the generalized labels LUSE outputs and their corre-
sponding automatic temporal alignments. We can see that
even though the two methods of preparing coffee (Turk-
ish Coffee and Butter Pour-Over Coffee) are very different,
our generated steps are generalizable across different vari-
ations of the same tasks. Moreover, the use of LLMs in
our step generation often allows for labels that are less rigid
and more descriptive than the COIN human annotations. Fi-
nally, for more specialized tasks, LLMs may possess more
domain knowledge than individual human annotators, al-
lowing for more precise and relevant generated steps.

Dense Coverage and Descriptivity. We show in Fig. 4
a comparison of steps for the same making burgers video
between LUSE and COIN. We can see that our generated
steps provide denser annotation coverage, with 7 key steps
being captured in comparison to the 3 labeled by the COIN
ground-truth annotations. Moreover, our generated steps
are more precise than the ground truth annotations. For ex-
ample, in the context of making burgers, the generated step
form the mixture into patties is more descriptive than the



Figure 3: BLIP2 FT. Outlier frames like outros or ending frames (blue) get captioned as well. We are working on modules to
automatically remove these.

Figure 4: Dense Coverage and Descriptivity The top row displays LUSE-generated labels, while the bottom row displays COIN ground
truth [15] labels provided by 3 human annotators (per video). Labels are matched to corresponding action frame. We show that (1) LUSE
steps are denser in coverage pairing to video frames and (2) are more comprehensive, generalized, and nuanced than that of COIN. For
coverage, LUSE outputs 7 out of 7 key steps, while only 3 out of 7 are manually annotated (and checked by 3 people) in COIN [15].

COIN ground-truth label knead the meat. This descriptive-
ness may be a result of our denser annotations, which allows
longer steps to be broken down into smaller, more descrip-
tive steps. This increased descriptiveness can also be seen
in Fig. 3, which compares our fine-tuned BLIP-2 output
to COIN ground-truth annotations. Specifically, we capture
more visual information, such as information about the or-
ange juice being in a tray and the table being wooden (step
1). We also receive more instruction details, such as fill a
food processor with oranges (step 4) and hold an orange
in front of the cutting board (step 3), which are important
instructions that are not included in the ground-truth labels.

5. Conclusion
LUSE is a promising method of unsupervised step ex-

traction from instructional videos. Currently, we have

achieved good qualitative results from labels generated in
this manner. In the future, we will obtain quantitative results
and evaluate performance on downstream tasks. Some more
immediate improvements can come in the form of remov-
ing outlier video segments when captioning new videos. For
example, in 3, we can see that the outro fade-out frame of
the video gets sampled and captioned. As a result, BLIP-
2 labels the steps ”view the word ’cookist’ in a black and
white photo” and ”arrange a bunch of pictures with people
on the wall”, which brings down accuracy considerably. In
the future, we can consider various modules to remove out-
liers such as Drop-DTW [3] or another GPT pass to remove
irrelevant frames or captions.



References
[1] Jean-Baptiste Alayrac, Piotr Bojanowski, Nishant Agrawal,

Josef Sivic, Ivan Laptev, and Simon Lacoste-Julien. Unsu-
pervised learning from narrated instruction videos, 2016. 2

[2] Yizhak Ben-Shabat, Xin Yu, Fatemehsadat Saleh, Dylan
Campbell, Cristian Rodriguez-Opazo, Hongdong Li, and
Stephen Gould. The ikea asm dataset: Understanding peo-
ple assembling furniture through actions, objects and pose.
2020. 2

[3] Nikita Dvornik, Isma Hadji, Konstantinos G. Derpanis, Ani-
mesh Garg, and Allan D. Jepson. Drop-dtw: Aligning
common signal between sequences while dropping outliers,
2021. 1, 2, 3, 4

[4] Daniel Fried, Jean-Baptiste Alayrac, Phil Blunsom, Chris
Dyer, Stephen Clark, and Aida Nematzadeh. Learning to
segment actions from observation and narration, 2020. 2

[5] Anna Kukleva, Hilde Kuehne, Fadime Sener, and Juergen
Gall. Unsupervised learning of action classes with continu-
ous temporal embedding, 2019. 2

[6] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models, 2023. 1,
3

[7] Tsung-Yi Lin, Michael Maire, Serge Belongie, Lubomir
Bourdev, Ross Girshick, James Hays, Pietro Perona, Deva
Ramanan, C. Lawrence Zitnick, and Piotr Dollár. Microsoft
coco: Common objects in context, 2015. 3

[8] Xudong Lin, Fabio Petroni, Gedas Bertasius, Marcus
Rohrbach, Shih-Fu Chang, and Lorenzo Torresani. Learning
to recognize procedural activities with distant supervision.
Distant supervision. 3

[9] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
Howto100m: Learning a text-video embedding by watching
hundred million narrated video clips, 2019. 2, 3

[10] F. Sener, D. Chatterjee, D. Shelepov, K. He, D. Singhania, R.
Wang, and A. Yao. Assembly101: A large-scale multi-view
video dataset for understanding procedural activities. CVPR
2022. 2

[11] Fadime Sener and Angela Yao. Unsupervised learning and
segmentation of complex activities from video, 2018. 2

[12] Ozan Sener, Amir Zamir, Silvio Savarese, and Ashutosh Sax-
ena. Unsupervised semantic parsing of video collections,
2016. 2

[13] Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan
Liu. Mpnet: Masked and permuted pre-training for language
understanding, 2020. 3

[14] Sanjay Subramanian, Medhini Narasimhan, Kushal
Khangaonkar, Kevin Yang, Arsha Nagrani, Cordelia
Schmid, Andy Zeng, Trevor Darrell, and Dan Klein. Mod-
ular visual question answering via code generation, 2023.
2

[15] Yansong Tang, Dajun Ding, Yongming Rao, Yu Zheng,
Danyang Zhang, Lili Zhao, Jiwen Lu, and Jie Zhou. Coin:
A large-scale dataset for comprehensive instructional video
analysis, 2019. 1, 2, 4

[16] Yue Zhao, Ishan Misra, Philipp Krähenbühl, and Rohit Gird-
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