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Abstract

As expectations related to generative models have risen
recently, Text-to-Video (T2V) models are being actively
studied. Existing T2V models have limitations in that it is
difficult to generate complex movements such as human mo-
tions. Then often generate unintended human motions and
the scale of the subject. In order to improve the quality
of videos that include human motion, we propose a three-
stage framework. In the first stage, Text-driven Human Mo-
tion Generation network generates 3D human motion from
input text prompt. In the second stage, 3D human motion
sequence is projected to a 2D skeleton format. In the third
stage, and then Skeleton-Guided Text-to-Video Generation
module generates a video where the motion of subject is
well represented. In addition, we can manipulate the cam-
era view point and angle to generate a video we want, since
the human motion generated in the first stage is 3D, not,
2D. We demonstrated that the proposed framework outper-
forms the existing Text-to-Video models in quantitative and
qualitative manners. To the best of our knowledge, the
our framework is the first methods using Text-driven Hu-
man Motion Generation networks to improve video with hu-
man motions. Our Project pages are available in https:
//yangchanghee.github.io/ICCVW_CPM/.

1. Introduction
Nowadays, Text-to-Image model (T2I) that generates

images using a given text prompt is being actively stud-
ied. In particular, models such as Stable Diffusion [1] and
DALL-E2 [2] are attracting more attention for their out-
standing performance. Alongside the growth of T2I, Text-
to-Video model (T2V), which generates the corresponding
video with a given text prompt is also developed.

Seminal research on T2V has gained momentum with the
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diffusion based models such as Dreamix [3], VDM [4], Im-
agenVideo [5], and Make-A-Video [6]. However, they are
facing some difficulties. First, complex movements such
as human motions are generated with a degree of awk-
wardness. To solve this problem, Skeleton-Guided Text-
to-Video Generation [7, 8], which conditioned on human
skeleton, enables pose control of the subject. However, it is
difficult to use for various applications because not only a
text condition but also a human skeleton is required. Sec-
ond, even with the given human skeleton, undesired results
are generated. For example, with certain human skeleton
condition the generated outputs have limited spectrum of
views such as only the back side of a person. Since the
model does not know which direction they are looking at, it
is trivial to get these results. If we use models that do not
use a skeleton as a guidance, the quality of a generated hu-
man is an issue. Notably, motion ambiguity, scale, temporal
consistency problems are the main issues occurred without
using a skeleton as a guidance as shown in Fig. 1

On the other hand, as various generation models have
been actively studied recently, Human Motion Generation
is also attracting a lot of attention. Early methods of Human
Motion Generation use human motion prediction [9, 10, 11]
that predict the next actions based on previous actions and
generating in-between motion [12, 13]. Recently, Text-
driven Human Motion Generation, which generates 3D hu-
man motion sequences from text prompts, has been studied,
opening the possibility of countless expansion of Human
Motion Generation. For example, MDM [14], MotionDif-
fuse [15] and T2M-GPT [16] are one of those. In particular,
T2M-GPT [16] is expected to be highly applicable as it can
generate complex movements with long sentences.

In this paper, we propose a novel video generation
algorithm that naturally generates human movements by
combining Text-driven Human Motion Generation and
Skeleton-Guided Text-to-Video Generation. In particular,
a text prompt as an input results a high-quality 3D human
motion to guide video generation model. Next, the gen-
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Figure 1. (a) shows that the output video does not align to the text in certain view point. In (b) the output zoom the object too much so
that it is hard to recognize what movement is described. Using human skeleton we can alleviate this problem. (c) shows the temporal
consistency problem. Using our methods, these problems does not happen.

erated consecutive 3D humans motions are converted to 2D
skeletons. In this step, an additional camera prompt is given
which is paired with a predefined camera extrinsic param-
eter. Lastly, the input text and the 2D human skeleton se-
quences from generated 3D motion are used to generate a
video with a high quality human movements.

Note that we not only improve the generation quality
of video containing ‘human motion’, but also control the
viewing angle and the movement of the camera. As far as
we know, the first framework which can control the camera
composition and the scale of the subject as desired. Fur-
thermore, techniques used in actual film shooting such as
Tilt up&down, zoom in&out, and dolly in&out can be ap-
plied to video generation, and the possibility of being used
in various applications such as the contents industry is un-
limited.

In summary, our contributions are:

• We propose a framework that combines the Text-
driven Human Motion Generation and the Skeleton-
Guided Text-to-Video Generation module to generate
a high quality video expressing dynamic scenes with
complex human behavior by a text based camera con-
trol.

• Our Text-to-Video methods outperform both quanti-
tative and qualitative results than previous methods.
Moreover actual film shooting techniques can be ap-
plied to video generation for various applications.

2. Proposed Method
In this section, we overview the proposed framework

which is shown in Fig. 2. Our method aims to enhance
a quality and diversity of generated videos with human mo-
tions inside and consists of three stages.

2.1. Text-to-Human Motion Generation

Text-to-Motion Generation stage uses predefined Text-
to-Motion (T2M) network that generates sequential 3D hu-
man motion. Formally, given a input text P , T2M network

F (P; θ) generates a set of vertices {V 3D
i }Ki=1 which form

meshes of a human formulated as below

F (P; θ) = {V 3D
1 , · · · , V 3D

K }, (1)

where θ is a model parameter of T2M network and K is the
number of vertices consisting meshes. In this stage, various
kinds of T2M network can be applied. We use a T2M-GPT
[16] that encodes motions using VQ-VAE [17].

2.2. Camera Projection Module

In this stage, we will introduce the Camera Projection
Module (CPM) shown in the bottom side of Fig. 2. This
module can takes a preset text description of a camera direc-
tion PCamera as an input and output corresponding projected
2D skeletons. This module consists of three parts. First part
is 3D skeleton regression. This step takes 3D mesh vertices
from text-to motion network and uses joint regressor from
[18] to regress joints from the mesh vertices. We can for-
mulate this stage as below where V 3D

i ∈ R3 denotes the ith

vertex of mesh, J3D
i ∈ R3 denotes the ith joints regressed

from the mesh and Jreg is the joint regression matrix

J3D
i = JregV

3D
i . (2)

Second part is a control of camera position using camera
prompt. We can express a rotation and a translation with a
camera extrinsic matrix using the homogeneous coordinate
denote as below (

R3×3 t3×1

01×3 11×1

)
. (3)

Note that R3×3 defines the rotation of a camera and t3×1

defines the translation of the camera. With intrinsic matrix
together we can define a projection matrix Pproj as below

Pproj =

fx 0 cx 0
0 fy cy 0
0 0 1 0

(
R3×3 t3×1

01×3 11×1

)
4×4

(4)



Figure 2. Overall process of our proposed framework. Top: A text prompt is passed to the Text-to-Human Motion Generation network
to generate 3D mesh vertices of each frames of motion. Then, with camera direction description prompt, Camera Projection Module (CPM)
convert these vertices to the skeletons and project to 2D space corresponding to the camera direction prompt. The last stage, (3) Skeleton
Guided Text-to-Video Generation, we use Text-to-Video network with 2D projected skeletons from CPM and generates the output video
corresponds to input prompt P . Bottom: CPM module in detail. CPM takes 3D vertices of mesh and regress the 3D skeleton with joint
regressor. And, decide camera position and direction with given textual description PCamera about the camera. Then mapping pre-define
parameter between prompt and camera direction and position, CPM project the 2D skeletons with the projection matrix determined by
prompt PCamera.

We pre-define the textual descriptions and correspond-
ing directions, and CPM uses the lookup table to decide a
position of camera. The final part is a 2D projection with
the camera rotation and translation matrices. With deter-
mined Pproj , we can project 3D skeleton to 2D space using
a homogeneous coordinate system:

XI

YI

w

 = Pproj


Xw

Yw

Zw

1

 . (5)

The final output of CPM is a direction aware 2D pro-
jected skeleton Ĵ2D

i . Note that it is not necessary to use
PCamera to decide camera position. If there is no textual de-
scription on camera position, then a identity matrix is used
for camera extrinsic matrix.

2.3. Skeleton-Guided Text-to-Video Generation

Using the output of the second stage, we use a text-to-
video network which uses a 2D skeleton from the CPM as
a guidance. Let G be a text-to-video network and γ is its
parameter. Given 2D skeleton from the CPM Ĵ2D

i , we get
the videos consists of m frames {f1, · · · , fm}.

This stage is formulated as below where Ĵ2D is the se-
quence of 2D projected motions represented as a concate-
nated form. The formal definition of Ĵ2D and output of G
are formulated as below

Ĵ2D = concat(Ĵ1
2D

, · · · , Ĵm
2D

), (6)

{f1, · · · fm} = G(Ĵ2D,P; γ). (7)

3. Experiments
In this section, we conducted three main experiments

and analyzed the results. First, we compared Text-to-Video
Generation results considering the presence or absence of
pose generated from the T2M-GPT [16] guidance which
are provided to the first stage from our framework. Second,
we compared the generated videos using two different Text-
to-Motion networks. Third, we experiment our framework
using a camera prompt.

3.1. Evaluation Metrics

Action Classification (AC) accuracy The ratio of well
classified videos to whole generated videos. It measures
how generated videos are matching with actions in prompts.
To evaluate how text prompts P are well aligned with video
output, we use an action classification model Text4Vis [19]
to evaluate action classification accuracy on the classes
(jump, run, climb, kick, punch, clap, golf, sit).
CLIPscore (CS) [20] This measures how well the gener-
ated videos are well aligned with text prompts.
Frame Consistency (FC) [21] This is an average of cosine
similarity between all consecutive pairs of CLIP image em-
beddings on all frames. This measures how naturally gen-
erated frames change.

3.2. Quantitative Results

Table 1 shows the quantitative results on AC, FC [21]
and CS [20] with and without pose guidance of text-to-
motion network. The pose guidance used is human mo-
tion generated from T2M model like T2M-GPT [16] with
text prompts, not human motion Ground Truth. AC has im-



Figure 3. This figure shows the T2V results obtained through the proposed CPM. (a), (b), (c), and (d) show the outcomes of applying
camera control such as Side view, Zoom In, Rotation, and Zoom Out, respectively.

Table 1. Quantitative comparison between two different Text-to-
Motion networks on action classification (AC) accuracy, frame
consistency (FC) [21], CLIPscore (CS) [20]. Pose guidance was
used as a T2M-GPT [16].

Without Pose Guidance AC↑ FC↑ CS↑
ModelScope [22] 32.5% 88.9% 30.1

Text2Video-Zero [23] 44.1% 81.7% 28.4
With Pose Guidance

Follow Your Pose [7] + Ours 48.9% 87.5% 30.4
Text2Video-Zero [23] + Ours 47.8% 92.2% 29.9

proved using pose guidance than without using it in both
text-to-motion networks. This shows that with pose guid-
ance, the ambiguity of generated motions is reduced. More-
over increased FC [21] shows that using our frameworks,
similarity of consecutive frames which means a sudden
change on movements between frames decreases making
more natural movements. Using Follow Your Pose (FYP)
[7] as a Text-to-Video network has the best AC among three
Text-to-Video networks. Moreover in FC [21] and CS [20],
T2V-Zero [23] has the best scores among others. This is
because the background changes with pose changes in FYP
[7], but not in T2V-Zero [23] where background images are
fixed. Then, we compared our results using CPM. We give
camera rotation and translation with two prompts each as
shown in Table 2. Even rotating and translating camera, the
results outperform the results of not using a pose guidance.
The AC for the class jump with using PCamera to “bird’s eye
view” improved from 33.8% to 86.7%. Moreover, the class
kick using viewing direction prompt “side view” improved
from 53.8% to 86.7% These implies certain viewing direc-
tions are more adequate to describe motions.

3.3. Controllable Camera Results

There are motions where their representations are highly
depend on camera directions. These problems occur when

Table 2. Quantitative results applying camera rotation and skeleton
scaling on CPM with pose guidance.

Camera Rotation AC↑ FC↑ CS↑
Default 51.9% 92.8% 30.3

Top view 57.7% 92.8% 30.5
Lateral view 51.0% 92.7% 30.7

Skeleton Scale
Default 51.9% 92.8% 30.3
Zoom in 48.0% 92.7% 29.6

Zoom out 45.2% 92.7% 29.3

the difference of motions flows in 3D space and optical
flows in projected 2D space is high. For example, as shown
in (a) in Fig 3, an action kicking is well represented when a
camera captures the person’s lateral part. Imagine the same
result when the camera is viewing straight to the person,
the motion would be less plausible. This is because, in the
case of the action “kicking”, the motion flow in 3D space is
substantial, while the optical flow in projected 2D space is
not. Furthermore, more diverse representation of motions is
possible as seen in Fig 3 (b), (c) and (d). So the control of
camera is necessary.
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