Learning and Verification of Task Structure in Instructional Videos

Medhini Narasimhan'?, Licheng Yu?, Sean Bell?, Ning Zhang?, Trevor Darrell!

1UC Berkeley, 2Meta Al
https://medhini.github.io/task_structure

Abstract

Given the enormous number of instructional videos
available online, learning a diverse array of multi-step task
models from videos is an appealing goal. We introduce
a new pre-trained video model, VideoTaskformer, focused
on representing the semantics and structure of instructional
videos. We pre-train VideoTaskformer using a simple and
effective objective: predicting weakly supervised textual la-
bels for steps that are randomly masked out from an instruc-
tional video (masked step modeling). Compared to prior
work which learns step representations locally, our ap-
proach involves learning them globally, leveraging video of
the entire surrounding task as context. From these learned
representations, we can verify if an unseen video correctly
executes a given task, as well as forecast which steps are
likely to be taken after a given step. We introduce two new
benchmarks for detecting mistakes in instructional videos,
to verify if there is an anomalous step and if steps are exe-
cuted in the right order. We also introduce a long-term fore-
casting benchmark, where the goal is to predict long-range
future steps from a given step. Our method outperforms pre-
vious baselines on these tasks, and we believe the tasks will
be a valuable way for the community to measure the quality
of step representations. Additionally, we evaluate Video-
Taskformer on 3 existing benchmarks—procedural activity
recognition, step classification, and step forecasting—and
demonstrate on each that our method outperforms existing
baselines and achieves new state-of-the-art performance.

1. Introduction

Picture this, you’re trying to build a bookshelf by watch-
ing a YouTube video with several intricate steps. You're
annoyed by the need to repeatedly hit pause on the video
and you’re unsure if you have gotten all the steps right so
far. Fortunately, you have an interactive assistant that can
guide you through the task at your own pace, verifying each

*Work done while an intern at Meta Al and a graduate student at UC
Berkeley. Correspondence to medhini@google.com

“Dip bread >P7red\£:1\0;0verr‘ “Serve with
in batter” | Step Classes maple syrup”
iy [0 EE R e 0
in batter”
VideoTaskformer

B

Prior work:
Single clip step prediction

Ours: Masked step prediction over all clips in video

Figure 1: Prior work [5, 4] learns step representations from single
short video clips, independent of the task, thus lacking knowledge
of task structure. Our model, VideoTaskformer, learns step repre-
sentations for masked video steps through the global context of all
surrounding steps in the video, making our learned representations
aware of task semantics and structure.

step as you perform it and interrupting you if you make a
mistake. A composite task such as “making a bookshelf”
involves multiple fine-grained activities such as “drilling
holes” and “adding support blocks.” Accurately categoriz-
ing these activities requires not only recognizing the indi-
vidual steps that compose the task but also understanding
the task structure, which includes the temporal ordering of
the steps and multiple plausible ways of executing a step
(e.g., one can beat eggs with a fork or a whisk). An ideal
interactive assistant has both a high-level understanding of
a broad range of tasks, as well as a low-level understanding
of the intricate steps in the tasks, their temporal ordering,
and the multiple ways of performing them.

As seen in Fig. 1, prior work [4, 5] models step repre-
sentations of a single step independent of the overall task
context. This might not be the best strategy, given that steps
for a task are related, and the way a step is situated in an
overall task may contain important information about the
step. To address this, we pre-train our model VideoTask-
former, with a masked modeling objective that encourages
the step representations to capture the global context of the
entire video. Prior work lacks a benchmark for detecting

https://medhini.github.io/task_structure

! Step label prediction \'; Lkl
: for masked steps b
777777777777777 Tii Lsc

l Linear Layer (fhead) ‘
fVT ’ Step transformer (firans) ‘

‘Ulu };W'"‘U”H

VideoTaskformer Pre-training

(
'
'

Mistake Step Detection

Step label for Vj 41

[
1 0: incorrect order
1 1: correct order

'

fvr fur ot

Wrong step

Wrong order Procedure Activity

Mistake Step Detection Recognition
”””” | {'Step fabels for Uit 1= Vit5! grep Lapel
¥ ,1 ,,,,,,

fur fvr

fvr
=

Short-Term
Step Forecasting

Long-Term

Step Forecasting Step Classification

Downstream Tasks

Figure 2: VideoTaskformer Pre-training (Left). VideoTaskformer fyr learns step representations for the masked out video clip v;, while
attending to the other clips in the video. It consists of a video encoder fyi4, a step transformer firans, and a linear layer fnead, and is trained
using weakly supervised step labels. Downstream Tasks (Right). We evaluate step representations learned from VideoTaskformer on 6

downstream tasks.

mistakes in videos, which is a crucial component of veri-
fying the quality of instructional video representations. We
introduce a mistake detection task and dataset for verifying
if the task in a video is executed correctly—i.e. if each step
is executed correctly and in the right order.

Additionally, we evaluate representations learned by
VideoTaskformer on three existing benchmarks: step clas-
sification, step forecasting, and procedural activity recogni-
tion on the COIN dataset. Our experiments show that learn-
ing step representation through masking pre-training objec-
tives improves the performance on the downstream tasks.
We will release code, models, and the mistake detection
dataset and benchmark to the community.

2. Learning Task Structure through Masked
Modeling of Steps

Our approach for pre-training VideoTaskformer is out-
lined in Fig. 2. Our framework consists of two steps: pre-
training and fine-tuning. During pre-training, VideoTask-
former is trained on weakly labeled data on the pre-training
task. For fine-tuning, VideoTaskformer is first initialized
with the pre-trained parameters, and a subset of the param-
eters is fine-tuned using labeled data from the downstream
tasks. Each downstream task yields a separate fine-tuned
model.

We extend masked language modeling techniques used
in BERT [2] and VideoBERT [§] to learn step representa-
tions for instructional videos. While BERT and VideoBERT
operate on language and visual tokens respectively, Video-
Taskformer operates on clips corresponding to steps in an
instructional video. By predicting weakly supervised natu-

ral language step labels for masked-out clips in the input
video, VideoTaskformer learns semantics and long-range
temporal interactions between the steps in a task.

Masked Step Modeling. Let V = {vy,...,vx} denote
the visual clips corresponding to K steps in video V. The
task for pre-training is to predict categorical natural lan-
guage step labels for the masked-out steps. While we do
not have ground truth step labels, we use the weak supervi-
sion procedure proposed by [5] to map each clip v; to a dis-
tribution over step labels p(y; | v;) by leveraging the noisy
ASR annotations associated with each clip. The distribution
p(yi | v;) is a categorical distribution over a finite set of step
labels Y. More details are provided in the Supplemental.

Let M C [1,..., K] denote some subset of clip indices
(where each index is included in M with some masking
probability 7, a hyperparameter). Let 1A, denote a par-
tially masked-out sequence of clips: the same sequence as
V' except with clips v; masked out for all 7 € M.

Let fyr represent our VideoTaskformer model with pa-
rameters 6. fyr is composed of a video encoder model fyiq
which encodes each clip v; independently, followed by a
step transformer fi.ns Operating over the sequence of clip
representations, and finally a linear layer fhe,q (wWhich in-
cludes a softmax). The input to the model is an entire video
(of size K x L x H x W x 3) and the output is of size K x S
(where S is the output dimension of the linear layer).

For the downstream tasks, we extract step-aware repre-
sentations using fyr by feeding an unmasked video V' to
the model. We then extract the intermediate outputs of fi;ans
(which are of size K x D, where D is the output embedding
size).

To predict step labels for masked-out steps at pre-

Downstream Model Base Model Pre-training Supervision Pre-training Dataset ~ Acc (%)
Transformer S3D [6] Unsupervised: MIL-NCE on ASR ~ HT100M 28.1
Transformer SlowFast [3] Supervised: action labels Kinetics 25.6
Transformer TimeSformer [1] Supervised: action labels Kinetics 34.7
LwDS: Transformer TimeSformer [1] Unsupervised: k-means on ASR HT100M 34.0
LwDS: Transformer w/ KB Transfer TimeSformer Distant supervision HT100M 39.4
VideoTF (SC; fine-tuned) w/ KB Transfer TimeSformer Unsupervised: NN on ASR HT100M 35.1
VideoTF (SC; linear-probe) w/ KB Transfer TimeSformer Distant supervision HT100M 39.2
VideoTF (DM; linear-probe) w/ KB Transfer ~ TimeSformer Distant supervision HT100M 40.1
VideoTF (SC) w/ KB Transfer TimeSformer Distant supervision HT100M 41.5
VideoTF (DM) w/ KB Transfer TimeSformer Distant supervision HT100M 42.4
Table 1: Accuracy of different methods on the short-term step forecasting dataset.
Downstream Model Base Model Pre-training Supervision ~ Pre-training Dataset ~ Acc (%)
Transformer (ASR text) w/ Task label ~ MPNet 39.0
Transformer SlowFast [3] Supervised: action labels Kinetics 15.2
Transformer TimeSformer [1] Supervised: action labels HT100M 17.0
Transformer w/ Task label TimeSformer [1] Supervised: action labels ~HT100M 40.1
LwDS: Transformer w/ Task label TimeSformer Distant supervision HT100M 41.3
VideoTF (DM) TimeSformer Distant supervision HT100M 40.2
VideoTF (DM) w/ Task label TimeSformer Distant supervision HT100M 46.4

Table 2: Accuracy of different methods on the long-term step forecasting dataset.

training time, we consider two training objectives: (1) step
classification, and (2) distribution matching.

Step classification loss. We use the outputs of fyr to rep-
resent an S-dimensional prediction distribution over steps,
where S = |Y|. We form the target distribution by placing
all probability mass on the best textual step description y;
for each clip v; according to the weak supervision process.
That is,

y; = argmaxp(y | v;). (D
yey
We calculate the cross entropy between the predicted and
target distributions for each masked out clip, yielding the
following expression:

- log([fVT(V\M)]j) 2

where j is the index of y; in Y, i.e., such that y; = Y.
To get the final training objective for a single masked video
V\ > We sum over all indices ¢ € M, and minimize with
respect to 6.

Distribution matching loss. For this objective, we treat the
distribution of step labels p(y; | v;) from weak supervision
as the target distribution for each clip v;. We then com-
pute the KL Divergence between the prediction distribution
Jvr(VAar) and the target distribution p(y; | v;) as follows:

Svr(Va)ly ©)

s
p(Yj | vi
> ol o) log L
=1
We sum over all ¢ € M and minimize with respect to 6.
Following [5], we use only the top-k steps in p(y; | v;) and
set the probability of the remaining steps to 0. Lin et al. [5]

show that the distribution matching loss results in a slight
improvement over step classification loss. For VideoTask-
former, we find both objectives to have similar performance
and step classification outperforms distribution matching on
some downstream tasks. We use fyr as a feature extrac-
tor (layer before softmax) to extract step representations for
new video segments.

Downstream Tasks. To show that the step representations
learned by VideoTaskformer capture task structure and se-
mantics, we evaluate the representations on 6 downstream
tasks—3 new tasks which we introduce (mistake step de-
tection, mistake ordering detection, and long-term step fore-
casting) and 3 existing benchmarks (step classification, pro-
cedural activity recognition, and short-term step forecast-
ing). We describe the dataset creation details for our 3 new
benchmarks in the Supplemental.

Mistake Detection. A critical aspect of step representations
that are successful at capturing the semantics and structure
of a task is that, from these representations, correctness of
task execution can be verified. We consider two axes of
correctness: content (what steps are portrayed in the video)
and ordering (how the steps are temporally ordered). We
introduce 2 new benchmark tasks to test these aspects of
correctness.

* Mistake step detection. The goal of this task is to identify
which step in a video is incorrect. Each input consists of a
video V' = {vy,...,vx} with K steps. V is identical to
some unaltered video V) that demonstrates a correctly exe-
cuted task, except that step v; (for some randomly selected
j €[l,...,K)]) is replaced with a random step from a dif-
ferent video V2. The model needs to predict the index j of
the incorrect step in the video.

Downstream Model Base Model

Pre-training Supervision

Pre-training Dataset

Mistake Detection

Step Order
Transformer (ASR text) w/ Task label MPNet [7] 34.2 334
Transformer w/ Task Label SlowFast [3] Supervised: action labels Kinetics 28.6 26.1
Transformer w/ Task label TimeSformer [!] Supervised: action labels ~HT100M 36.0 34.7
LwDS: Transformer TimeSformer Distant supervision HT100M 17.1 11.2
LwDS: Transformer w/ Task Label TimeSformer Distant supervision HT100M 37.6 31.8
VideoTF (SC) TimeSformer Distant supervision HT100M 20.1 154
VideoTF (DM) w/ Task label TimeSformer Distant supervision HT100M 40.8 34.0
VideoTF (SC; fine-tuned) w/ Task label =~ TimeSformer Distant supervision HT100M 41.7 354

Table 3: Accuracy of different methods on the mistake step and ordering detection test dataset.

* Mistake ordering detection. In this task, the goal is to
verify if the steps in a video are in the correct temporal
order. The input consists of a video V- = {v1,...,vk}
with K steps. The steps are randomly permuted with a 50%
probability. The model needs to predict whether the steps
are ordered correctly or are permuted.

Step Forecasting. Here we test the network’s capabilities
in anticipating future steps given one or more past clips of a
video.

¢ Short-term forecasting. Consider a video V =
{v1,..+,Un,Vnt1,... VK } where v; denotes a step, and V'
has step labels {y1,...,yx}, where y; € Y, the finite set
of all step labels in the dataset. Short-term forecasting in-
volves predicting the step label y,, 1 given the previous n
segments {v1,...,v,} [5].

* Long-term step forecasting. Given a single step v; in
avideo V = {v1,...,vk} with step labels {y1,...,yx},
the task is to predict the step labels for the next 5 steps, i.e.
{Yi+1,Yit2,---,Yirs}. This task is particularly challeng-
ing since the network receives very little context—just a
single step—and needs to leverage task information learned
during training from watching multiple different ways of
executing the same task.

Procedural Activity Recognition. The goal of this task is
to recognize the procedural activity (i.e., task label) from a
long instructional video. The input to the network is all the
K video clips corresponding to the steps in a video, V' =
{v1,...,vk}. The task is to predict the video task label
t € T where 7T is the set of all task labels for all the videos
in the dataset.

Step Classification. In this task, the goal is to predict the
step label y; € Y given the video clip corresponding to step
v; from a video V' = {vy,...,vk}. No context other than
the single clip is given. Therefore, this task requires fine-
grained recognition capability, which would benefit from
representations that contain information about the context
in which a step gets performed.

For all of the above tasks, we use the step and task label
annotations as supervision. We show the “zero-shot” per-
formance of VideoTaskformer by keeping the video model
fvia and the transformer layer fi.,s fixed and only fine-
tuning a linear head fy.,q On top of the output representa-

tions. Additionally, we also show fine-tuning results where
we keep the base video model fyig fixed and fine-tune the
final transformer fi.ns and the linear layer fhe,q on top of
it. The network is fine-tuned using cross-entropy loss with
supervision from the step labels for all downstream tasks.

We provide implementation details of our method and
describe the datasets and evaluation metrics in the supple-
mental.

3. Experiments

We evaluate VideoTaskformer (VideoTF) and compare
it with existing baselines on 6 downstream tasks: step
classification, procedural activity recognition, step forecast-
ing, mistake step detection, mistake ordering detection, and
long-term forecasting. Here we report results on mistake
detection 3 and forecasting tasks Tab. 2 and 1. The datasets,
metrics, baselines, ablations, and additional results are in-
cluded in the Supplemental.

For short-term forecasting in Tab. 1, we achieve a 3%
improvement over LwDS and our unsupervised pre-training
using NN with ASR outperforms previous unsupervised
methods. We also note that linear-probe outperforms base-
lines in Tab. 1. VideoTF achieves a strong improvement of
5% over LwDS on the long-term forecasting task 2, 4% on
mistake step detection 3, and 4% on mistake ordering de-
tection 3. Adding task labels improves performance on all
three tasks.

4. Conclusion

In this work, we introduce a new video model, Video-
Taskformer, for learning contextualized step representations
through masked modeling of steps in instructional videos.
We also introduce 3 new benchmarks: mistake step detec-
tion, mistake order detection, and long term forecasting. We
demonstrate that VideoTaskformer improves performance
on 6 downstream tasks, with particularly strong improve-
ments in detecting mistakes in videos and long-term fore-
casting. Our method opens the possibility of learning to
execute a variety of tasks by watching instructional videos;
imagine learning to cook a complicated meal by watching a
cooking show.

Acknowledgements. We would like to thank Suvir Mir-
chandani for his help with experiments and paper writ-
ing. This work was supported in part by DoD including
DARPA’s LwLL, PTG and/or SemaFor programs, as well
as BAIR’s industrial alliance programs.

References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

Gedas Bertasius, Heng Wang, and Lorenzo Torresani. Is
space-time attention all you need for video understanding?
In International Conference on Machine Learning (ICML),
2021. 3,4

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of deep bidirectional trans-
formers for language understanding. In Conference of the
North American Chapter of the Association for Computa-
tional Linguistics, 2019. 2

Christoph Feichtenhofer, Haoqi Fan, Jitendra Malik, and
Kaiming He. SlowFast networks for video recognition. In
IEEE International Conference on Computer Vision (ICCV),
2019. 3,4

Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg,
Mohit Bansal, and Jingjing Liu. Less is more: ClipBERT
for video-and-language learning via sparse sampling. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2021. 1

Xudong Lin, Fabio Petroni, Gedas Bertasius, Marcus
Rohrbach, Shih-Fu Chang, and Lorenzo Torresani. Learning
to recognize procedural activities with distant supervision. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR),2022. 1,2,3,4

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan
Laptev, Josef Sivic, and Andrew Zisserman. End-to-end
learning of visual representations from uncurated instructional
videos. In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2020. 3

Kaitao Song, Xu Tan, Tao Qin, Jianfeng Lu, and Tie-Yan Liu.
MPNet: Masked and permuted pre-training for language un-
derstanding. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2020. 4

Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and
Cordelia Schmid. VideoBERT: A joint model for video and
language representation learning. In IEEE International Con-
ference on Computer Vision (ICCV), 2019. 2

