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1. Related Work

We review the work done in talking face generation and
how human emotion is utilized in generating realistic talk-
ing face videos separately as follows.

1.1. Talking Face Generation

Several recent works focused on generating talking face
videos using deep neural networks. Wu et al. [25] pro-
posed ReenactGAN for talking face generation using the
face reenactment technique, which helped transfer the fa-
cial landmarks and expressions from a source video of
an arbitrary person to the target identity. The landmark
boundary encoding was extracted from an arbitrary per-
son’s video and mapped to the target person’s video via
a decoder. Some other works [11, 27] also used facial
landmark-based face reenactment techniques for generating
video frames. Chen et al. [4] used facial landmarks and
a cascade GAN approach to generate desired videos. In
this approach, the audio embedding was transferred to fa-
cial landmarks, which were then used to generate videos
using a regression-based discriminator. Zhang et al. [26]
proposed Facial-GAN, which considered explicit face at-
tributes like lip movements and implicit face attributes such
as head pose, and eye blink to generate high-quality video
frames. Video-based methods that modified only the lip
region of the face [14, 18, 24, 16, 21] can generate high-
quality talking face videos. They copied the upper half of
the face from the input video to generate the target video
and hence could not modify the facial expressions and emo-
tions in the upper half of the face. These works did not
use human emotion in their models, one of the most critical
explicit attributes the model should incorporate to generate
more realistic talking face videos.

1.2. Emotional Talking Face Generation

Earlier methods [20, 5] tried to infer facial emotions im-
plicitly from audio. However, they have not succeeded at
accurately reproducing realistic animation and have strug-
gled to control facial expressions. In contrast, We explicitly
feed the desired emotion category as the model input.

Ji et al. [12] proposed an Emotion Video Portraits (EVP)
algorithm to incorporate the emotion of the audio signal
within the target video. Using a Cross-Reconstructed Emo-
tion Disentanglement technique, they decomposed the au-
dio input into a duration-dependent content feature and a
duration-independent audio feature. With these two fea-
tures, emotional facial landmarks were extracted. They in-
troduced the Target-Adaptive Face Synthesis technique that
adapted the inferred facial landmarks to the target video.
However, they relied on intermediate global landmarks (or
edge maps) to generate textures with emotions and on an
additional Dynamic Time Warping [2] algorithm to de-
velop their training data to enable cross-reconstructed train-
ing. They obtained the latent emotion representation from
the input audio using audio emotion disentanglement and
then used that disentangled emotion as an explicit modality.
Hence, the disentanglement accuracy determined the con-
trol of the emotion, making it challenging to have flexible
and fully independent control of the emotion. Wang et al.
[22] proposed an emotional talking face generation method
with explicit emotion control and MEAD dataset (a diverse
emotional audio-visual dataset). Similar to our method,
they used one-hot representation for emotion. However,
they proposed a two-branch architecture, one branch for
modifying only the upper half of the face based on emo-
tions and the other for modifying only the lower half of the
face using an LSTM [10]-based audio-to-landmarks mod-
ule. This resulted in inconsistent and conflicting emotions
on the face. So unlike the above-discussed methods, our
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Figure 1: We illustrate a video generation end-to-end network built upon base skeleton architecture. It accepts a continuous
set of frames (fully masked) concatenated with reference frames, the Mel spectrogram form of a speech utterance, and a
categorical emotion. We concatenate their embeddings in a skip-connection style as shown in this Figure to generate a
lip-synced video rendered with the input emotion.

work incorporates emotions into the whole face and uses
an audio-independent emotion to generate the talking face
videos. Also, EVP [12] and MEAD [22] were involved in
training target-specific texture models. Their work is based
on single-identity generation. So unlike our model, they
perform well only on the subject they are trained on and
cannot adapt to arbitrary identities.

Magnusson et al. [13] modified the architecture proposed
in [14] to modify emotion using L1 reconstruction and pre-
trained emotion objectives. However, their work suffered
from several limitations. They did not modify the audio
of the source video but retained the original one, which is
not the case in most practical applications. In contrast, our
model can choose arbitrary audio, ensuring lip synchroniza-
tion accordingly. Also, their model only modified emotion
between specific pairs of emotions (happiness, sadness,
and neutral), whereas our model has a broad range of six
categorical emotions. Moreover, they trained separate mod-
els for each type of emotion transfer. In contrast, our single
model can handle all kinds of emotion transfers.

Most models that allow emotion control are image-based
models [20, 22, 5, 9, 15] (i.e., which use an identity image
as an input along with speech utterance), hence rendering
only minor head movements and produce low-quality re-
sults. They cannot be used in real-world scenarios. Existing
work in emotional talking face generation is limited (espe-
cially in the case of video-based models). To the best of our
knowledge, this is one of the first studies in which the ex-
pression and emotion of a person are considered to generate
lip synchronization and talking face generation from video
input.

2. Experiments
This section discusses the dataset utilized, methods for

concatenating embeddings, implementation details, and our
experimental findings.

Figure 2: Augmented frame of an example of CREMA-D
[3] dataset. The leftmost is the reference frame, followed by
fully masked input, generated frame, and the ground truth
frame.

2.1. Dataset

To incorporate the emotions, a dataset with emotion la-
bels is required, and according to our approach, it should
fulfill the requirement of a single face in every frame of
each clip. Currently, only a few such datasets are publicly
available. We use CREMA-D for our purpose. Here are the
main attributes of the dataset:

• It contains 7442 clips from 91 actors (48 male and 43
female).

• Actors spoke from a selection of 12 sentences.

• Sentences were presented using one of the six emo-
tions (happiness, sadness, fear, anger, disgust,
neutral).



• The image resolution of the clips is 480× 360.

We arbitrarily select 5 out of 91 actors and used all of
their videos as the test dataset, and the rest of the videos
formed the training dataset. We also employ several data
augmentation techniques on our input frames, such as ran-
dom brightness contrast, random Gamma, channel shuffle,
RGB shift, and Gaussian noise to generalize our model bet-
ter. The same augmentations were used in all the input
frames to make the frames consistent in visual features like
background color, contrast, luminance, brightness, etc. This
helped us increase the training data and helped our model
generalize over the different background settings. See Fig-
ure 2 for an example.

2.2. Concatenating Methods

We try to concatenate the emotion embedding to video
and speech embedding using two approaches:

End Concatenation (END). We concatenate the emotion
encoding at the final step with the video and audio encoding
already concatenated. For this, we repeat the emotion T =
5 (number of frames per input) along the first dimension.
Then after passing through the emotion encoder, we get a
latent representation of emotion which is then concatenated
with already concatenated audio and face embeddings and
is eventually passed through the final output block to get the
generated frames of the video.

{N ∗ T, 80, 96, 96}
Already concatenated

face and audio embeddings

+{N ∗ T, 1, 96, 96}
Emotion embedding

≡ {N ∗ T, 81, 96, 96}
Final embedding

N,T are batch size and the number of input frames. Note
that to concatenate the audio and video embeddings, we
process them through face decoder blocks using skip con-
nections (from outputs of layers of different resolutions of
face/video encoder blocks).

Sequential Concatenation (SEQ). We concatenate the
emotion encoding through skip connections similar to the
audio encoding. We first concatenate the audio and emo-
tion embedding. The concatenated embedding is processed
through face decoder blocks of the generator using skip con-
nections along with face embedding as shown in Figure 1.

2.3. Noise Encoder

We introduce a noise encoder in the initial part of our
model, along with a face, audio, and emotion encoder. A
noise vector is drawn from the standard Gaussian distribu-
tion for each video frame. We process this sequence of
noise vectors through a single layer of an LSTM [10] en-
coder to get noise embedding which is concatenated with
the face embeddings. The motive for introducing this mod-
ule of temporal noise is to account for randomnesses, such

as head movements and eye blinking, independent of the in-
put data. We do not incorporate a noise encoder in any of
our experimental settings.

2.4. Pre-training the Base Model (PRE)

LRS2 [1] is relatively larger than CREMA-D [3] and has
more complex head poses, but it cannot be used for our
modified model because it does not have categorical emo-
tion labels. Hence, we try to pre-train the base model (that
does not require emotion labels) on the LRS2 dataset and
then use the face encoder block from the pre-trained model
in two ways (as the architecture of the face encoder is the
same in both the base model and the modified model):

• Keeping the weights of the face encoder fixed while
training the modified model.

• Using pre-trained weights of face encoder as initializa-
tion for training the modified model.

We also modify the base model to generate the whole face
instead of only the lip region and then pre-train it.

2.5. Implementation Details

Adam optimizer [8] is used for training all the networks
with β1 and β2 as 0.5 and 0.999 respectively. The learning
rate for updating the emotion discriminator and generator is
1e−6 and 1e−4, respectively. The full objective function of
training the generator is

Lgen = αEsync + βLperc + γLemo

+(1− α− β − γ)Lrecon

(1)

where, α, β, γ are the weights for the respective loss com-
ponents. Constant α is set to 0 initially and later updated
to 0.03 when the sync-loss on validation data becomes less
than a predefined value. β, γ are 0.01 and 0.001 respec-
tively. Images are normalized between the 0 and 1 value
range.

By increasing the weight assigned to the emotion loss
term, the model can more effectively incorporate emotions
into its predictions at an earlier stage of the training process,
but it comes at the cost of a slight reduction in reconstruc-
tion quality.

3. Inference Details

The Number of frames in the input to the model is a hy-
perparameter. While training, we set it to 5, and our model
generates the 5 new frames corresponding to those input
frames, whereas our model inference allows any number of
frames to be generated depending upon the duration of au-
dio and video input. More information is as follows:



Figure 3: Visualization of the projected emotion embed-
dings. Each color represents a specific emotion.

Input audio duration = Input video duration. The
number of frames generated is the same as the number of
frames in the input video.

Input audio duration < Input video duration. During
inference, we trim the video, limiting it to the duration of
input audio, and the model generates the number of frames
equal to that in the trimmed video.

Input audio duration > Input video duration. We re-
peat the last frame of the input video to extend the input
video to the duration of the input audio, and the model gen-
erates the number of frames equal to that in the extended
video.

4. Ablation Study

We study the efficacy of our different experimental set-
tings in this section.

4.1. Emotion Encoder

We visualize the embeddings learned by our emotion en-
coder. We use t-SNE [19] algorithm to project the learned
encodings to a 2-dimensional space as shown in Figure 3.
We arbitrarily select ActorID 1011 from the test split of the
CREMA-D [3] dataset. We utilize all the videos of that
actor for our purpose. We average the embeddings across
the frames for each video. Each data point in Figure 3 rep-
resents averaged embeddings of a video of ActorID 1011.
Clusters formed for different emotions in Figure 3 show
that our emotion encoder learns useful representations for
the emotion.

END

SEQ

PL+DA

PRE

END

SEQ

PL+DA

PRE

Happy Sad Fear Anger Disgust Neutral

Figure 4: We generate videos for all six emotions and con-
catenated the specific frames from each. Each row repre-
sents an experiment mentioned in Section 4, and each col-
umn represents a particular emotion in all the experiments.

4.2. END Concatenation

See Section 2.2 for details of the END concatenation. We
do not employ perceptual loss and data augmentation in this
experiment. Although the sync quality is good, the visual
and emotional rendering are unsatisfactory. See rows la-
beled END in Figure 4. Moreover, some undesirable green
background is present in the frames of the second exam-
ple because all the training examples have a green screen
in their background, so the model cannot generalize com-
pletely on other videos. Some arbitrary black dot artifacts
are also visible on the generated frames. A possible ex-
planation for the same could be that the one hot emotion
vector is sparse. We repeat it for every frame and process
this sparse vector formed through an emotion encoder to
generate a large tensor, concatenating it to already concate-
nated audio and video embeddings to generate the required
video. So the presence of large-sized sparse matrices in this
approach results in black dot artifacts on the frames.

4.3. SEQ Concatenation

See Section 2.2 for details of the SEQuential concate-
nation. This method improves the visual quality and emo-
tional rendering to a large extent. Here, we do not employ
perceptual loss or data augmentation. See rows labeled SEQ

in Figure 4. Emotion is rendered to some extent in the
frames. The model still doesn’t generalize, as a green back-
ground can be seen in the frames. However, those black
dot artifacts disappear using the method SEQ because this
approach reduces the size of the sparse matrices involved.
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Ground Truth

Wang et al. 2021

Prajwal et al. 2020

Emotion: Anger

Figure 5: An example comparing generated frames using a cartoon subject sampled from the internet. We chose this subject
to evaluate the ability of different approaches to generalize to arbitrary identities. Every fifth frame of the generated video is
shown in each row. Wang et al. [23] (second row) completely failed to generate any meaningful video and instead generated
frames full of artifacts. Eskimez et al. [9] was unsuccessful in detecting the relevant face from the video in the initial step
and could thus not generate an emotional talking face video. Furthermore, Magnusson et al. [13] cannot generate a video for
anger emotion. In contrast, our approach PL+ DA successfully detected the relevant face to generate the realistic frames and
effectively conveyed the anger emotion on the subject’s face.

Ground Truth

Prajwal et al. 2020

Wang et al. 2021

Eskimez et al. 2021

Ours (PRE)

Emotion: Disgust

Figure 6: An example comparing generated frames using a subject from the test dataset of CREMA-D [3]. Every fifth frame
of the generated video is shown in each row. The top row corresponds to the ground truth video. Our baseline Prajwal
et al. [14] (third row) generated realistic frames but cannot incorporate emotions. Wang et al. [23] (second row) again failed
to preserve the subject’s identity, resulting in non-human-like faces. Eskimez et al. [9] (fourth row) could not effectively
synthesize the disgust emotion. Magnusson et al. [13] involves only three emotions (happiness, sadness, neutral). It cannot
generate video for disgust emotion. In contrast, our approach PRE was able to generate realistic frames that accurately
depicted the disgust emotion on the subject’s face.

This concatenation method is our preferred approach, and
we conduct the following experiments using it.

Efficacy of including Perceptual Loss and Data Augmen-
tation (PL+DA). This approach is: SEQ + Perceptual loss
+ Data Augmentation. See rows labelled PL+DA in Figure



4. We observe the most satisfactory results under these ex-
perimental settings. Data augmentation solves the issue of a
green background, aiding the model generalizing on videos
other than training examples. Also, penalizing the model
with perceptual loss improves visual quality and emotion
rendering.

Efficacy of Pre-training the Base Model (PRE). This ap-
proach is basically: (PL+DA) + pre-training. See Section 2.4
for details of this experiment. See rows labeled PRE in Fig-
ure 4. The results show a slight improvement in the frames’
visual quality, but a degradation in the temporal continuity
of the generated frames is observed. Emotion rendering is
comparable to PL+DA.

5. Additional Qualitative Results

See Figure 5 and 6 for additional qualitative results.

6. Quantitative Evaluation Methods

This section discusses the methods used for quantitative
evaluation in detail.

6.1. Emotion Incorporation

We exploit an emotion classifier to evaluate the gener-
ated emotional talking face videos. We utilize the same ar-
chitecture as the emotion discriminator in our main pipeline.
We trained the classifier for the train split of the CREMA-
D [3] dataset. We obtain an accuracy of more than 90%
on the test set of the CREMA-D dataset, indicating that our
video-based emotion classification model can fairly eval-
uate the emotion incorporation ability of our model. The
higher the emotion classification accuracy (EmoAcc) of the
video-based emotion classifier, the better the emotion in-
corporation ability of the model. As we are using arbitrary
emotions to generate our videos, those arbitrary emotions
can be exploited as ground truth labels for the classifier to
evaluate our model.

6.2. Sync Quality

We use the metrics LSE-C and LSE-D, proposed in [14]
to evaluate the sync quality. The lower the LSE-D, the
higher the sync quality. The higher the LSE-C, the higher
the sync quality. We use the videos from the CREMA-D
[3] dataset, but the audio inputs are randomly sampled from
the internet in English and Hindi. All our experiments (END,
SEQ, PL+ DA, PRE) have a sync quality comparable to our
baseline (Wav2Lip [14]) and better than other related works,
which means that adding emotion to the base model does
not compromise the sync quality.

6.2.1 Calculating LSE-C and LSE-D

Pre-trained SyncNet released by [7] is utilized to measure
the lip-sync error between the generated frames and the ran-
domly chosen speech segment. This SyncNet differs from
the expert lip-sync discriminator we have used in training.
Its architecture is based on Siamese networks [6] and is
trained on a public dataset (derived from the BBC videos)
using contrastive loss. The pre-trained model is available
publicly1.

A sliding-window technique is utilized to calculate the
LSE-C and LSE-D metrics. For each video clip, multi-
ple samples are extracted because there may be samples in
which no one is speaking at that particular time. The Eu-
clidean distance between one 5-frame video feature and all
the audio features in the ±1 second range is calculated for
each sample. Then those distances are averaged across all
the samples. Out of all those average distances, the mini-
mum one is defined as the Lip Sync Error - Distance (LSE-
D) because the correct offset is when the distance is min-
imum. The difference between the median and minimum
(LSE-D) of the average distances calculated above is de-
fined as the Lip Sync Error - Confidence (LSE-C).

6.3. Visual Quality

We use Fréchet Inception Distance (FID) for evaluating
the visual quality. Feature representations of the two sets of
images are encoded using a pre-trained Inception network
[17], and then Fréchet distance is calculated between the
Gaussian distributions fitted to those representations. The
FID scores for all the approaches involving emotions are av-
eraged over the six emotion categories. The FID for our ap-
proach (involving emotion) is expected to be higher than the
approaches not involving emotions [14, 23] because emo-
tion incorporation, along with lip synchronization, requires
more image manipulation than the ones involving only lip
synchronization. The methods not incorporating emotions
generate only the lower half region of the face, i.e., the lip
region, whereas, for emotion incorporation, we generate the
entire face. However, our visual quality improved signifi-
cantly due to the addition of perceptual loss in PL+DA and
PRE settings. The significant difference between PL+DA and
PRE settings is additional knowledge gained by PRE through
pre-training. The PRE approach outperforms all other meth-
ods in FID.

7. Web Interface

Our proposed framework includes a user-friendly web
interface that allows users to generate talking faces with
emotions using the model with PL+DA settings. Currently,
the model uses an NVIDIA TITAN Xp GPU for inference.

1https://github.com/joonson/syncnet python

https://github.com/joonson/syncnet_python
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Figure 7: Working of the demo website.

FastAPI (Python Framework) is used for the backend devel-
opment of the interface, which handles all the API requests.
HTML, CSS, and Javascript are used for front-end devel-
opment. All the clients’ requests are sent to the backend
via Javascript using a fetch call. Request details are sent in
JSON format. The website is hosted on HTTPS to address
security issues. The website is super-easy to use, as illus-
trated in Figure 7. Following are some basic steps to use the
demo website:

• Before using the interface, read the instructions on the
home page.

• Choose an arbitrary video, audio, and emotion as in-
puts. You can also use the recording feature for video
and audio inputs. Then press the ”Sync Input” button
(located at the bottom right of the home page).

Figure 8: Details of the user study.

• After a 20 to 30 seconds wait, the emotionally en-
hanced and lip-synced talking face video will be ready.

A video illustration is also provided in the accompanying
supplementary materials

8. User Study
We conduct a user study through subjective evaluation

to understand the user experience on our web interface. We
survey a diverse group of 25 users about their experience
navigating and using the website. We ask them to rate the
ease of usability, design, functionality, and overall experi-
ence on a scale of 0 to 5. The higher the rating, the better
the web interface. Additionally, we ask them for specific
suggestions. We also provide them with a small illustration
video explaining some basic steps to use the website. See
Figure 8 for more details. The user study results provided
valuable insights into the strengths and weaknesses of our
web interface. The feedback from the participants will en-
able us to improve the website, particularly its design.

9. Image vs. Video as an Input
Using an image as an input instead of a video will obvi-

ously render significantly fewer head movements in the gen-
erated video, as video-based models can also inherit head
movements from the source input video. Video-based mod-
els can generate videos with much better temporal coher-
ence, meaning the movements of the mouth and other facial
features are more consistent over time. They can incorpo-
rate more subtle variations in facial expression and move-
ment, which makes the videos appear more lifelike and con-
vincing. Moreover, in real-world applications like dubbing



movies, TV shows, etc., We cannot use image-based mod-
els because to generate the dubbed video, we will definitely
require a source video input.

10. Emotion as an explicit modality
Explicit control over the emotion in talking face video

generation can be valuable in various real-world applica-
tions. For example, In a video advertisement, the audio may
have a neutral tone, while the visuals may need to convey a
happy or excited emotion. While extracting emotions from
the audio can be helpful, the emotional content of the au-
dio may not be clear or easily separable from other audio
signals. Regarding the robustness and consistency of ex-
traction from audio, the emotional content of speech can be
affected by various factors such as tone, pitch, and volume,
which can be challenging to separate from the speech sig-
nal. Also, the existing models may not accurately capture
the emotion from audio, leading to inaccuracies in the ex-
tracted emotional expression.

11. Limitations and Future Work
Our approach, however, is limited by the availability

of datasets with categorical emotion labels that are long
enough and have exactly one face in each frame. Our cur-
rent approach does not allow the use of datasets with mul-
tiple faces in a single frame, and the short datasets do not
allow the model to generalize effectively. CREMA-D [3]
contains relatively simple videos (with only a straight head
pose). We can find or collect a better dataset for future work.
It should be long enough to make the model generalize bet-
ter and have videos with different head poses. One such
potential dataset is MEAD [22].

Various further improvements can be included in future
work. Some better masking methods can be explored to
mask the ground truth frames (such as using a convex hull).
Different ways to enforce the input emotion on the final au-
dio can be examined, such as using an additional loss func-
tion. For evaluating the emotion rendering of the model,
deepfake detectors that detect deepfakes based on inconsis-
tency in emotions can be used. Also, some more relevant
metric than FID score is required to access the visual qual-
ity in the case of emotion incorporation because emotion
rendering leads to more significant changes in the face than
lip synchronization.

12. Ethical Use
Synthetic video generation has many potential applica-

tions, including entertainment, education, and marketing.
However, their use also raises ethical concerns that must
be carefully considered. Talking face generation, videos
may spread misinformation or propaganda or impersonate
individuals for fraudulent or malicious purposes. It can

lead to reputation damage and emotional distress. As these
videos become more sophisticated and difficult to detect, it
becomes increasingly challenging to distinguish real from
fake content. This undermines the integrity of the media.
Given these risks, it is essential to consider how synthetic
media can be regulated or controlled to minimize their neg-
ative consequences. One possibility is developing high-
quality algorithms or tools that detect and flag synthetic
content. Another approach is establishing legal frameworks
or guidelines that outline the acceptable uses of talking face
generation videos and penalties for misuse.

Finally, it is crucial to recognize that the creators and
users of talking face generation videos are responsible for
ensuring that they are used ethically, which includes consid-
ering the potential impacts of their work on others and tak-
ing steps to minimize any negative consequences. It also in-
volves being transparent about synthetic media and clearly
labeling content as manipulated when appropriate.
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