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Abstract

In temporal action localization, given an input video, the
goal is to predict which actions it contains, where they be-
gin, and where they end. Training and testing current state-
of-the-art deep learning models requires access to large
amounts of data and computational power. However, gath-
ering such data is challenging and computational resources
might be limited. This work explores and measures how
current deep temporal action localization models perform
in settings constrained by the amount of data or computa-
tional power. We measure data efficiency by training each
model on a subset of the training set. We find that Tempo-
ralMaxer outperforms other models in data-limited settings.
Furthermore, we recommend TriDet when training time is
limited. To test the efficiency of the models during inference,
we pass videos of different lengths through each model. We
find that TemporalMaxer requires the least computational
resources, likely due to its simple architecture.

1. Introduction

Temporal action localization (TAL) is concerned with
automatically recognizing an action and its start and end
in a video [29]. TAL has found potential use in domains
such as video summarization [14] and public video surveil-
lance [27, 29]. Various algorithms are proposed for TAL,
and deep learning models such as such as TriDet [23], Tem-
poralMaxer [24], and ActionFormer [33] outperform mod-
els based on hand-crafted features [29]. These deep learn-
ing models require large datasets to train on, such as THU-
MOS’14 [11] or ActivityNet [9]. However, curating, an-
notating and storing datasets of such scale is difficult, ex-
penisve, and time-consuming [20, 29, 30]. To save data, in
this work we explore data efficiency of deep learning-based
TAL models.

*Equal contribution

In addition to data efficiency, we also evaluate com-
pute efficiency. Compute efficiency is particularly relevant
when the success of Transformers [26] in natural language
processing (NLP) [12, 26], is employed in TAL [18, 33].
Transformers are known to be computationally expensive
[13, 25]. To save computing resources, in this work, we
explore how computationally efficient deep learning-based
TAL methods are.

Our analysis of data- and compute-efficiency focuses on
ActionFormer [33], STALE [19], TemporalMaxer [24], and
TriDet [23], as they represent the current state-of-the-art in
temporal action localization. The contributions of this paper
are four-fold, as detailed below.

First, we test the data efficiency of the TAL models. In-
spired by Ding et al. [5] and Henaff [10], we train each
model multiple times on a percentage of the training set and
report the average mean average precision (mAP). By ap-
plying this method on both THUMOS’14 [11] and Activ-
ityNet [9] datasets, we find that the TemporalMaxer [24]
performs the best in a data-limited setting.

Second, we evaluate the effect of score fusion [28,32,33]
on data efficiency. Score fusion combines the outputs of an
evaluated model with the outputs of an auxiliary model, of-
ten UntrimmetNet [28, 33]. We find that score fusion can
significantly increase the performances of the models. We
thus recommend that when choosing a model for a cus-
tom dataset, the options both with and without score fusion
should be considered.

Third, we test the computational efficiency of each
model during training. We measure training performance
by analyzing the trade-off between training time and ob-
tained average mAP. We find that the TriDet model [23] is
the best choice in training time-limited settings, because it
requires the least amount of training time but still obtains
the best average mAP.

Fourth, we test the computational efficiency of each
model during inference. We expand on the approach of
measuring the computational complexity of the model by
passing to it a video of a specific size [23, 24, 33]. We



evaluate each model on videos of increasing lengths and re-
port the number of floating point operations, the memory
consumed, and the inference time. We find that Tempo-
ralMaxer requires the least computational resources, while
STALE [19] requires the most.

2. Related work
Action recognition. The survey by Xia and Zhan

[29] identifies five different tasks in video understanding:
untrimmed video classification, trimmed action recognition,
temporal action proposals, temporal action localization, and
dense-captioning events in videos. This work focuses on
temporal action localization (TAL) for its potential uses in
video summarization [14] and public surveillance [27]. In
TAL, the goal is to predict which actions happen in a video
stream, where they begin, and where they end. The deep
learning models created for this problem can be divided into
two categories [29]: two-stage and one-stage. Two-stage
models [7,16,17] attempt to first locate the actions and then
classify them. One-stage models [18, 23, 24, 33] locate and
classify the actions at the same time. This work analyzes
ActionFormer [33], STALE [19], TemporalMaxer [24], and
TriDet [23], all of which are one-stage models.

Testing for data efficiency. This problem involves as-
sessing how well a given model performs with limited train-
ing data available. A common approach is to use n-shot
learning [20,30], which involves training the model on only
n samples per class. However, since a single class can be
represented multiple times in a single video [9,11], it is un-
clear whether n should refer to the number of videos the
given class appears in or whether it is the total number of
instances of the class. Furthermore, representing each class
equally would be difficult as the number of instances of a
class per video varies. An alternative approach involves
training on a given percentage p of the samples from the
training dataset [5, 10]. In this work, we use this approach.

Optimizing for data efficiency. As collecting and an-
notating datasets is expensive [29], related works have pro-
posed few-shot TAL methods [20, 30]. These models use
meta-learning and require all of the support videos to be
input into the model at once. This makes their architec-
ture incompatible with the architecture of current state-of-
the-art models, which only expect a single video as input
[23, 24, 33]. This work, therefore, analyzes the data effi-
ciency of some of the current state-of-the-art models.

Testing for computational efficiency. The term ‘com-
putational efficiency‘ is often used to mean the number of
floating point operations [8, 23–25, 33], the memory used
[13,25], or the training [15] or inference time [23,24,33]. In
the task of temporal action localization, TriDet [23], Tem-
poralMaxer [24], and ActionFormer [33] all report the num-
ber of floating point operations as the amount of multiply-
accumulate (MAC) operations and the time it takes to for-

ward a single video of a fixed length through the model.
However, no experiments have been performed that would
show how these models scale with an increase in video
length. This is relevant, as models that scale linearly, will
asymptotically outperform models that scale e.g. quadrati-
cally. Hence, even if a quadratic model outperforms a lin-
ear model on short videos, it will perform worse on longer
videos. Thus, in this work, the inference performance of
each of the tested models is measured on videos of increas-
ing lengths.

Furthermore, motivated by [15], this work reports the
training time and the achieved mean average precision of
each of the TAL models. This is done to better understand
the suitability of each model for settings where the training
time is limited.

Optimizing for computational efficiency. Both TriDet
[23] and TemporalMaxer [24] aim to lower the required
computational cost of ActionFormer [33]. In TriDet, this is
achieved by replacing the multi-head self-attention module
with an efficient Scalable-Granularity Perception layer [23].
TemporalMaxer, on the other hand, replaces the entire trans-
former module with a max-pooling block [24]. This work
compares the computational efficiencies of ActionFormer,
STALE [19], TemporalMaxer, and TriDet.

3. Models
ActionFormer. ActionFormer [33] was one of the first

models that showed a successful use of Transformers [26]
in temporal action localization. The model uses an encoder-
decoder architecture with a Transformer encoder and a con-
volutional decoder. At the time of its proposal, the model
reached state-of-the-art performance on the THUMOS’14
dataset obtaining an average mAP of 66.8%. The model
also showed promising results on both the ActivityNet [9]
and EPIC-Kitchens 100 [4] datasets. We also selected this
model for evaluation, as the architectures of newer models,
TriDet [23] and TemporalMaxer [24], are inspired by the
architecture of the ActionFormer.

STALE. Zero-Shot Temporal Action Detection via
Vision-Language Prompting (STALE) [19] is the most re-
cent and state-of-the-art method in zero-shot temporal ac-
tion localization. Inspired by CLIP [21], STALE uses
a temporal vision transformer [6] to encode videos into
video embeddings and a text transformer [26] to encode
class prompts into text embeddings. STALE attempts to
learn an inter-relationship of vision-language via cross at-
tention [26]. The model achieved average mAP of 52.9%
and 36.4% on the THUMOS’14 and ActivityNet datasets
respectively, outperforming similar models. We selected
this model for evaluation, to compare it against methods that
were not designed for a zero-shot learning scenario.

TemporalMaxer. The TemporalMaxer [24] model was
constructed to require a low computational cost without



sacrificing localization performance. Instead of employ-
ing a computationally-heavy backbone, such as a Trans-
former [26,33], the model uses a basic, parameter-free max
pooling block on top of a pre-trained 3D CNN. This model
currently represents the state-of-the-art on the MultiTHU-
MOS dataset [31] obtaining an average mAP of 29.9%. Im-
portantly, the model also has a lower computational com-
plexity compared to other models. On a video of a length
of around 5 minutes from the THUMOS’14 dataset, the in-
ference time of the TemporalMaxer was observed to be 3x
shorter than that of the ActionFormer.

TriDet. The TriDet model [23] bases its architecture
on the ActionFormer. Instead of using a multi-head self-
attention mechanism, the model replaces it with an efficient
Scalable-Granularity Perception (SGP) layer. The resulting
model improves on the performance of the ActionFormer,
obtaining an average mAP of 69.3% on the THUMOS’14
dataset. Furthermore, the TriDet model represents the cur-
rent state-of-the-art for the EPIC-Kitchens 100 dataset. Fi-
nally, the model was also shown to require less time and
fewer floating point operations than the ActionFormer when
performing inference on a 5 minute video from the THU-
MOS’14 dataset.

4. Evaluation setup

4.1. Data efficiency

Evaluation metrics. Following common practice [1,
23, 24, 29, 33], the models were evaluated by reporting
the achieved mean average precision (mAP) on different
tIoU thresholds. Intersection over union (tIoU) is a 1-
dimensional temporal Jaccard similarity metric and is thus
computed as the ratio of the intersection of the predicted
and actual duration of an action to their union. Given a
tIoU threshold µ and a class c, correct predictions are those,
whose tIoU ≥ µ and the predicted class is the class c. Pre-
cision is then the ratio of the number of correct predictions
to the total number of made predictions for the class c. As
there can be multiple videos for each class c, average pre-
cision is the average of the precisions obtained in each of
those videos. Finally, mean average precision is the average
AP over all of the classes c. Thus, in general, given a fixed
tIoU threshold µ, the higher the mAP, the better the model
performs.

Testing procedure. In this setup, it is assumed that a
dataset D has a predefined split into a training set Dtrain and
a testing set Dtest. Following works by Ding et al. [5] and
Henaff [10], a percentage p of the training set Dtrain was
randomly and uniformly sampled to create a subsetDs. The
models were then trained on the set Ds and evaluated on
the set Dtest. During the evaluation, mean average precision
was calculated at different tIoU thresholds. The sampling,
training, and testing procedure was repeated 5 times [2, 5]

with different random splits. The mAP for each threshold
was then averaged and the standard deviation was reported.
The entire procedure was repeated for multiple percentages
p. Algorithm 1 describes the exact testing procedure in the
form of pseudocode.

In the pseudocode, the function sample randomly sam-
ples videos from the training set, such that:

|Ds| = round
(
|Dtrain| ·

p

100%

)
(1)

with round rounding the value to the nearest integer. Ad-
ditionally, the function sample needs to ensure that each
action class is represented at least once in the resulting set
Ds. In practice, this was realized by repeatedly sampling
from the set Dtrain until a split, where all classes are repre-
sented, was found. The function calculate-mAP evaluates
the model, that is, it calculates the mean average precision
at different tIoU thresholds the model achieved on the test
set Dtest.

Algorithm 1 Data efficiency testing procedure

Dtrain = {(Xi, Ŷi)}Ni=1

Dtest = {(Xi, Ŷi)}Mi=1

for p = 10%, . . . , 100% do
mAPs← empty list
for i = 1, . . . , 5 do
Ds ← sample(Dtrain, p)
Train on Ds
mAP← calculate-mAP(Dtest)
mAPs.append(mAP)

Report avg(mAPs) and std(mAPs)

Algorithm 1. The data efficiency testing procedure. Assuming
Dtrain and Dtest are given, Dtrain is repeatedly subsampled with per-
centage p to create the set Ds. The model is then trained on Ds

and evaluated on Dtest. The procedure is repeated 5 times for each
percentage p, at each time reporting the averages of the mAPs and
their standard deviation.

To understand the results between different datasets, for
each percentage p the expected number of instances per
class is reported. This will help in investigating how many
instances per class each model requires. Given a dataset
Dtrain containing N samples, having M action instances
in total, and C action classes, the expected number of in-
stances per class for each percentage p is calculated as:

#/class =
p

100%
· N
C
· M
N

=
p

100%
· M
C

(2)

It should be noted that the value computed in Equa-
tion (2) is an estimate. The exact values would depend on
the splits Ds used in the testing procedure. Nonetheless,
this approximation was found to be useful in practice when
comparing the models on different datasets.



Score fusion. Score fusion is a commonly used tech-
nique in TAL [19, 23, 33] to improve the performance of a
model. Although the exact implementations vary between
models, the general rule is that the final predictions made
by a model are combined with the output of UntrimmedNet
[19, 23, 28, 33]. UntrimmedNet [28] is a weakly-supervised
action recognition model which only predicts video-level
classes without temporal localization. It should be noted
that UntrimmedNet is trained on the full ActivityNet and
THUMOS datasets, respectively, while in practice limited
training data would also apply to UntrimmedNet. Thus, in
this work, the setups that use score fusion by default are also
evaluated without score fusion.

4.2. Computational efficiency

4.2.1 Training performance

Inspired by Li et al. [15], the training time of each of
the models is reported alongside the average mAP achieved
on the test set. The training time is measured without ini-
tialization, that is, only the time spent in the training loop
is measured. In this way, only the model performance is
measured, without the time taken by external methods such
as PyTorch data loaders. The training and testing procedure
is repeated 5 times using different random seeds, each time
measuring the time spent and the average mAP achieved.

4.2.2 Inference performance

Evaluation metrics. Following the works on TriDet
[23], TemporalMaxer [24], and ActionFormer [33] the
models were evaluated by reporting the total number
of multiply-accumulate (MAC) floating point operations,
memory consumed, and the inference time when fed an
input video. To count the number of multiply-accumulate
operations, the fvcore library [22] was used. As
Transformer-based methods are known to require large
amounts of memory [13, 25], we additionally report the to-
tal GPU memory (VRAM) footprint of each model, which
is measured using the max memory allocated method
from PyTorch.

Testing procedure. The models were evaluated on
randomly generated tensors, whose shapes correspond to
videos of differing lengths. To guarantee the independence
of results, the experiments for inference time, memory con-
sumption, and number of MACs were run independently.
Before each inference time measurement, the random ten-
sor was passed through the model once as a warm-up pro-
cedure. Without this procedure, it was observed for the
ActionFormer model that the inference time would be con-
stant for all lengths of the input tensor. This was most likely
caused by memory allocations happening as the tensor was

being passed through the model. As such, the warm-up pro-
cedure was applied to all models to ensure a fair evaluation
for all input sizes. Furthermore, the experiments for infer-
ence time were repeated 5 times [23] with different random
tensors.

Additional setup was also required by the ActionFormer
model. Given a dataset D, the ActionFormer model is pa-
rameterized by a value max seq len indicating the maxi-
mum length of a video inD expressed in the number of fea-
tures [33]. During inference, all videos are padded with ze-
ros to the max seq len length, which results in the same
amount of computation done regardless of video length. To
alleviate this issue, the value max seq len was config-
ured to the lowest allowable value, which would be found
through an inspection of the code. It should be noted that
the value max seq len is only used during training and
changing it during inference does not influence the output
of the model, which was verified with one of the authors of
the ActionFormer.

5. Experiments
Datasets. The models were evaluated on two datasets,

commonly used to assess temporal action localization algo-
rithms [19, 23, 33]: THUMOS’14 [11] and ActivityNet [9].
THUMOS’14 contains 413 untrimmed videos and 20 action
classes. This dataset is further split into a validation set,
containing 213 videos and a test set containing 200 videos.
In total, the validation set contains 3,007 action instances.
We follow the configuration from the authors of the tested
models and hence train the models on the validation set and
test on the test set [19, 23, 24, 33]. ActivityNet contains
around 20,000 videos with 200 action classes. The dataset
is further split into a training set (10,024 videos), a valida-
tion set (4,926 videos), and a test set (5,044 videos). Using
the approach from [19,23,33], the models are trained on the
training set and evaluated on the validation set. As some of
the videos from the ActivityNet dataset have become un-
available over time, it should be noted that the exact size of
the dataset varies when using different models or features.

Features. We take into consideration all features that
were made available by the authors of a model for the
given dataset. Hence, on the THUMOS’14 dataset, Action-
Former [33], TemporalMaxer [24], and TriDet [23] are all
evaluated using the Inflated 3D (I3D) features [3]. On the
ActivityNet dataset, the ActionFormer was evaluated using
both I3D and TSP [1] features. STALE [19] was tested with
the CLIP [21] features. The STALE model was not evalu-
ated using I3D features due to limited compute availability.
Finally, the performance of the TriDet model on the Activi-
tyNet dataset was measured using the TSP features.

Experimental setup. All of the models were trained
and tested using a single NVIDIA Tesla V100S 32GB lo-
cated on an HPC cluster. All of the training and testing
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(a) Performance of the compared models on the THUMOS’14
dataset [11] in terms of average mAP@tIoU[0.3:0.1:0.7]. The
TemporalMaxer model [24] performs the best with little train-
ing data available, likely due to a simpler architecture. The
TriDet model outperforms TemporalMaxer when the average
number of instances per class is > 100.
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(b) Performance of the compared models on ActivityNet [9]
in terms of average mAP@tIoU[0.5:0.05:0.95]. The x-axis is
shifted to the left for some setups due to fewer training sam-
ples being available. Most importantly, the ActionFormer and
TriDet models can be seen to outperform the STALE model on
all tested values of p.

Figure 1: Reported average mAP@tIoU for the tested models on the THUMOS’14 [11] and ActivityNet [9] datasets. For each model, only
the average mAP is shown. The width of each line corresponds to two standard deviations obtained by repeating the procedure 5 times for
each p. Additionally, the expected average number of instances per class (#/class) is reported as a secondary x-axis. We find that all of the
models reach their near-best performance with less than or around 100 action instances per class.

hyperparameters were left unchanged for the models unless
otherwise stated in the subsequent sections. During data ef-
ficiency experiments, we therefore also use score fusion im-
plemented by the ActionFormer, STALE, and TriDet mod-
els on the ActivityNet dataset [19,23,33]. We reflect on the
impact of the score fusion on the performance of the models
in Section 5.1.1.

5.1. Data efficiency

Results on THUMOS’14. The results on the THU-
MOS’14 dataset can be seen in Figure 1a. Firstly, we note
that at p = 100%, the average performance for each of the
models is slightly lower than in the original works. We find
an average mAP of 66.57 ± 0.22 [%] compared to 66.8%
for the ActionFormer, 66.79 ± 0.16 [%] contrary to 67.7%
for TemporalMaxer, and 68.07± 0.42 [%] instead of 69.3%
for TriDet. As noticed by [33], however, different hard-
ware setups may lead to different results, which might ex-
plain the differences observed in this work. Furthermore,
we see that all models follow a similar learning curve. This
is most likely caused by the fact that the models share a
similar architecture, inspired by the architecture of the Ac-
tionFormer [23,24,33]. Moreover, as can be observed, at the
low percentages p, the TemporalMaxer [24] model performs

the best. This can be explained by the simpler architecture
employed by the model, which would require less training
data than the other models. We also note that for all mod-
els, the incline in performance noticeably slows down above
p = 60%, which corresponds to around 90-100 action in-
stances per class. We can thus see that each model satu-
rates at around 100 action instances per class and does not
gain much from additional data. We also see that the TriDet
model begins to outperform the TemporalMaxer around the
same mark.

Results on ActivityNet. As can be seen in Figure 1b,
both the ActionFormer and the TriDet models outperform
the STALE model on all tested percentages p. Furthermore,
we observe that ActionFormer and TriDet saturate around
the 40-60% mark and do not gain from additional training
data. This corresponds to around 30-40 action instances per
class. We also notice that the STALE model does not visibly
gain from an increase in training data. The model achieves
an average mAP of 19.06± 0.22 [%] at p = 10% compared
to 19.53±0.22 [%] at p = 100%. This flat learning curve is
caused by the score enhancement, as is shown experimen-
tally in Section 5.1.1.

Discussion. From Figure 1a, we can observe that the
TemporalMaxer should likely be chosen in settings where



the amount of data is limited. The simple architecture of
that model allows it to show the best data efficiency out of
the tested models. Figure 1b suggests that the ActionFormer
or TriDet models should be chosen in favor of STALE.
Based on the combined results in Figure 1, it is difficult
to put an exact bound on the number of action instances per
class required by the models. On both of the datasets, how-
ever, we can observe that the models reach their near-best
performance with less than or around 100 action instances
per class. This suggests making datasets larger will not fur-
ther improve the performance of the tested models.

5.1.1 Score fusion

In the default configuration, the score fusion techniques
are used by the ActionFormer [33], STALE [19], and TriDet
[23] on the ActivityNet dataset [9]. We repeat the data ex-
periments without score fusion for these models on the Ac-
tivityNet dataset and report the results. We use the default
features for these models for these experiments, hence, Ac-
tionFormer and TriDet use the TSP features [1], and STALE
uses CLIP [21]. The results can be seen in Figure 2. Score
fusion improves the performance of the models for all tested
values of p. The largest impact can be seen at low percent-
ages p in the small data regime.
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Figure 2: Performance of ActionFormer (AF), STALE, and TriDet
with score fusion (SF) and without score fusion (w/o SF). As we
can observe, the performance of the models drops when score fu-
sion is not used.

Discussion. Unsurprisingly, score fusion has a signif-
icant influence on the performances of the models. It
should be noted that score fusion is based on the assump-
tion that UntrimmedNet class predictions are readily avail-

able, which in practice may not be the case. One should
therefore be aware that performance on ActivityNet or Thu-
mos does not always directly translate to true performance
on a custom dataset, which may be lower. Alternatively,
employing score fusion on custom data requires additional
compute for retrieving the UntrimmedNet predictions. We
argue that when choosing a model on a custom dataset, it is
important to decide on the applicability of score fusion and
evaluate the model both with and without score fusion.

5.2. Computational efficiency

Concurrent jobs on the HPC cluster. By default, the
GPU nodes are shared between users in our compute clus-
ter. This setup could lead to a dependence of the training
or inference time on the other jobs running on the cluster.
To alleviate this issue, the training and inference time ex-
periments were performed five times sequentially, such that
the experiment jobs did not overlap. Therefore, the results
for training and inference times are averaged over a total
of 25 runs. We measure the remaining variance in training
time, assuming that a low variance means that there are no
important unmeasured confounding factors stemming from
the concurrent use of the cluster.

5.2.1 Training efficiency

Results. We present the results in Table 1. On THU-
MOS’14, TriDet achieves the best performance while re-
quiring the least amount of training time on average. In-
terestingly, we find that the training time of the Tempo-
ralMaxer varies greatly between runs: from 1216.56 to
6829.95 seconds. This variance might come from the early
stopping criterion employed in the training script of the
model. Nonetheless, even in its fastest training run, Tempo-
ralMaxer is still the slowest of the tested models. On Activ-
ityNet, ActionFormer and TriDet train for around five times
as long as STALE, but also achieve much better perfor-
mance. Finally, we note that the variance in training times
was low for all models, except for the TemporalMaxer, thus
the concurrent jobs on the cluster likely did not interfere
with the experiment jobs.

Discussion. From the results obtained in Table 1 we find
that the TriDet model should be chosen in settings where
the training time is limited. This is due to the fact that the
model was found to not only train for the least amount of
time on THUMOS’14 but also achieve the best performance
on both datasets. If the choice of the model is between Ac-
tionFormer and STALE, we find that the latter could be used
in limited training time settings. Choosing STALE over the
ActionFormer would, however, likely come with a decrease
in TAL performance.
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Figure 3: Inference time, number of floating point operations, and memory consumption for ActionFormer [33], TemporalMaxer [33],
and STALE [19]. Most notably, we find that the TemporalMaxer model requires the least computational resources during inference, while
STALE requires the most.

Table 1: Training performance of the compared models on the
ActivityNet [9] and THUMOS’14 [11] datasets. Both average
training time and obtained average mAP are reported. On THU-
MOS’14, TriDet is the fastest and performs the best. On Activ-
ityNet, the ActionFormer and TriDet models take longer to train
than STALE but also achieve better performance.

Model Time [s] Avg. mAP [%]

THUMOS’14

AF 887 ± 54 65.89 ± 0.09
TemporalMaxer 2957 ± 1660 66.96 ± 0.37

TriDet 646 ± 26 68.07 ± 0.42

ActivityNet

ActionFormer (I3D) 1945 ± 61 35.9 ± 0.14
ActionFormer (TSP) 1932 ± 232 36.4 ± 0.05

STALE 401 ± 6 19.37 ± 0.16
TriDet 2236 ± 224 36.57 ± 0.18

5.2.2 Inference efficiency

Additional experimental setup. For the Action-
Former [33], TemporalMaxer [24], and TriDet [23] mod-
els, we obtained inference efficiency results by creating ran-
dom tensors corresponding to I3D features [3] extracted
from videos from the THUMOS’14 dataset [11]. We ob-
tained results for the STALE model by creating random
tensors corresponding to CLIP features [21] on the Activ-
ityNet dataset [9]. The lengths of the tensors vary from
200 to 3000 in 200 increments. This range is dictated by
the ActionFormer model, where the lowest allowable value
of max seq len is 576, so videos of lengths longer than

3456 cannot be passed through the model without further
changes to the configuration.

Results. As can be seen in Figure 3, the TemporalMaxer
model consistently achieves the lowest inference time, num-
ber of floating point operations, and memory consumption.
This is because of the simple architecture of the model,
which contains fewer parameters than other models [24].
Conversely, we find that the STALE model is the most com-
putationally expensive in all three tested metrics and on all
tested lengths of the input video. Furthermore, we observe
that the number of floating point operations and the memory
consumption increase in steps for the ActionFormer model.
This is because the model architecture requires padding in-
put videos to multiples of 576. Nonetheless, the model
scales linearly with respect to the input size. This thus
matches the claims of the original work [33]. We see that
TriDet and TemporalMaxer both also scale linearly with re-
spect to the input size. As can be seen in Figure 3b, the
computational complexity of the STALE model does not in-
crease linearly. A similar pattern is observable for memory
consumption of STALE in Figure 3c. Interestingly, we find
a linear pattern in the inference time of STALE in Figure 3a.

Discussion. In case of limited compute resources, Tem-
poralMaxer should be chosen. TemporalMaxer requires the
least amount of computational power on all tested video
lengths. STALE should not be chosen in such settings,
not only due to higher computational complexity but also
because it scales non-linearly with respect to input video
length. Hence, even if a configuration would be found that
causes STALE to be more efficient on short videos, asymp-
totically it will still be worse than any other linear model.



6. Conclusion

In this work, we ask how well state-of-the-art temporal
action localization models perform in settings limited by the
amount of training data or computational resources avail-
able. We find that in a data deficient setting the Tempo-
ralMaxer model [24] works the best, likely due to its sim-
ple architecture, which consists of fewer parameters com-
pared to other models and does not use a Transformer back-
bone. Additionally, we find that performance barely im-
proves when adding data beyond 100 action instances per
class. This suggests making datasets larger will not further
improve the performance of the tested models. The use of
score fusion was shown to improve the performances of the
models, hence when training a model on a custom dataset,
options with and without score fusion should be considered.
Furthermore, we test computational efficiency during train-
ing and inference. We find that TriDet [23] offers the lowest
training time as well as the best performance. Addition-
ally, we find that TemporalMaxer requires the least compu-
tational resources at inference time, again likely due to its
simple architecture without a Transformer backbone.

Limitations. It should be noted that the method for
measuring data efficiency is limited as ActionFormer and
TriDet are the only models that were evaluated on both
datasets. Furthermore, the procedures for testing training
and inference efficiency have limitations. The models have
only been so far evaluated on the THUMOS’14 and Activ-
ityNet datasets. The results on different datasets could lead
to different conclusions. Furthermore, the timing experi-
ments have been performed on a shared HPC cluster. It was
however observed that the variance in training and infer-
ence times was small, which indicates that the concurrent
jobs did not interfere with the experimental jobs.

Future work. This work provides insights that will help
in developing future data or computationally efficient TAL
models. Based on the results of ActionFormer [33] and
STALE [19], we see that self-attention should not be the
mechanism of choice if the training data or computational
resources are limited. We find that replacing such modules
with custom layers, such as SGP [23] or replacing trans-
former modules with max pooling [24] improves the effi-
ciency of the model. Finally, we note that future work in
evaluating current models in terms of data or computational
efficiency is possible. More models could be evaluated or
the models could be evaluated on more datasets.
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