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Abstract

Although Single Image Super-Resolution is an important
editing task with many applications, it still remains an ill-
posed one. This is due to the existence of a large number
of possible HR images for each LR image, and also because
popularly used metrics such as PSNR and SSIM promote
blurry images that lack realistic detail. In this work, we
present CoolGAN, a transformer-based GAN with a focus
on generating realistic detail. Our generator consists of
Swin transformers acting upon the input image at different
levels of detail, and we also use a novel transformer-based
perceptual loss to further promote realism. We compare
CoolGAN to state-of-the-art methods. Quantitatively, Cool-
GAN ranks below the others in terms of PSNR and SSIM.
However, qualitative analysis reveals that CoolGAN gener-
ates far sharper details. We provide some examples here,
and more are provided in the supplementary material.

1. Introduction
Single Image Super-Resolution (SISR) aims to obtain a

high quality Super-Resolved (SR) image from a degraded
Low-Resolution (LR) image. The intention is to deal
with blurry images by clarifying, sharpening, and upscal-
ing them. The problem is ill-posed; since the LR im-
ages don’t possess high-frequency details, there are mul-
tiple High-Resolution (HR) images that map to the same
LR image upon being downscaled. Some methods try to
address this by reformulating the task itself [15], but a ma-
jority of SISR methods rely on measurements such as Peak
Signal to Noise Ratio (PSNR) and Structural Similarity In-
dex Measure (SSIM) to evaluate their performance. This
comes with its own problems - minimizing pixel-wise dis-
tance measures between the SR and ground truth HR images
leads to better PSNR and SSIM scores, but leads to blurring
and lack of detail.

SRCNN [3] pioneered the use of CNNs for SISR; sub-
sequent works such as EDSR [10], DRCN [7], RDN [22],
etc. extended this by achieving better PSNR scores. How-
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Figure 1. An Example. The image produced by CoolGAN con-
tains sharper details than the others.

ever, these methods lead to over-smoothed results. In order
to improve the visual details in the SR image, some meth-
ods incorporated perceptual [5] and contextual losses [13].
SRGAN [8] introduced adversarial loss and achieved im-
proved perceptual quality; many methods have since made
use of GANs to acheive photorealistic SR images [19, 20].

Real-ESRGAN [19], specifically, focuses on practical
image restoration and improving the visual quality of the
image rather than maximizing PSNR and SSIM. The model
is trained with an improved U-Net discriminator to improve
realness.

On the other hand, transformers have recently been ap-
plied to vision tasks with great success [4, 11]. The trans-
former architecture is able to exploit global interactions be-
tween different regions in the input feature map as opposed



Figure 2. CoolGAN’s Generator

to a convolutional layer, whose operation is inherently lo-
cal. One of the chief drawbacks of vision transformers that
limited their application in dense vision tasks was the com-
putational cost, which was addressed in some subsequent
work [11]. Following this, vision transformers have suc-
cessfully been applied in SISR [9, 12].

Swin transformers [11] adapted vision transformers for
efficient use in dense vision tasks by means of a shifted win-
dow strategy. With this, self-attention is computed locally at
each individual module, but the application of shifted win-
dows over multiple layers allows long-range global depen-
dencies to be learned. SwinIR [9] successfully applied these
to a SISR generator, achieving state-of-the-art performance
in terms of PSNR and SSIM.

We take cue from both of these paradigms to design
CoolGAN, a new transformer-based GAN with a focus on
realism. For the design of the generator, we incorporate
both vision transformers and convolutional processing in
the form of an architecture similar to SwinIR [9]; however,
our method differs with regards to the level of detail we al-
low the transformer to act upon. Our generator can be seen
as consisting of five stages: 1) Shallow Feature Extraction
(SFE), 2) Deep Feature Extraction 1 (DFE1), 3) Resolve
1 (R1), 4) Deep Feature Extraction 2 (DFE2), 5) Resolve
2 (R2). The deep feature extractors DFE1 and DFE2 are
where the bulk of the processing takes place; they consist of
the Swin transformers in the form of RSTB modules, as pre-
sented in SwinIR [9]. The nature of processing done by the
Resolve stages differs based on the scale factor. In the case
of ×2 and ×3 Super-Resolution, R1 upscales the feature
maps to the respective scale and R2 consists only of convo-
lutional refinement. If the scale factor is some other multi-
ple of 2, i.e. ×2n Super-Resolution, where n ∈ N−{1}, R1
upscales the feature maps to ×2⌊n/2⌋ and R2 performs the
final ×2⌈n/2⌉ upscaling to ×2n. In this preliminary work,
we evaluate our approach on ×4 Super-Resolution, wherein
both R1 and R2 perform ×2 upscaling. In order to pro-
mote perceptual quality, we also design a new perceptual
loss based on vision transformers, which combines features
from VGG19 [18] and Swin-Tiny [11].

We evaluate CoolGAN on the Set5, Set14 and Urban100
datasets for quantitative comparison with previous methods,

and also discuss the perceptual visual qualities of the images
produced.

2. CoolGAN
Here we describe the three most important factors of

CoolGAN: the network, the generator (as shown in Figure
2), and the perceptual loss function.

2.1. The GAN

The structure of the GAN remains the same as in SR-
GAN [8]. Given the LR image ILR and the correspond-
ing HR image IHR, our goal is to train the generator GθG ,
where θG are the weights parametrizing the network. We
seek to optimize θG as:

θ̂G = argmin
θG

1

N

N∑
n=1

lSR(GθG(I
LR
n ), IHR

n ) (1)

where we define lSR as a weighted sum of three loss
components: the pixel loss, the perceptual loss and the ad-
versarial loss. Of these, the pixel loss is the simple L1 loss
between the SR and HR image. The adversarial compo-
nent encourages the generator to try and fool the discrimi-
nator, which itself keeps getting better, in a min-max game.
We use the relativistic discriminator [6] DRa as in ESR-
GAN [20], based on a modified VGG network.

lSR = αlpixel + βlperceptual + γladversarial (2)

lpixel =
1

rWH

rW∑
x=1

rH∑
y=1

(IHR
x,y −GθG(I

LR)x,y)
2 (3)

ladversarial = −EIHR [log(1−DRa(I
HR, GθG(I

LR)))]

− EGθG
(ILR)[log(DRa(GθG(I

LR), IHR))] (4)

The perceptual loss is described in Section 2.3



Method Set5 Set14 Urban100

PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑ PSNR ↑ SSIM ↑
RCAN [21] 32.63 0.9002 28.87 0.7889 26.82 0.8087
SAN [2] 32.64 0.9003 28.92 0.7888 26.79 0.8068
IGNN [23] 32.57 0.8998 28.85 0.7891 26.84 0.8090
HAN [16] 32.64 0.9002 28.90 0.7890 26.85 0.8094
NLSA [14] 32.59 0.9000 28.87 0.7891 26.96 0.8109
SwinIR [9] 32.72 0.9021 28.94 0.7914 27.07 0.8164
CoolGAN (ours) 30.06 0.8453 26.65 0.7339 24.37 0.7534

Table 1. CoolGAN’s PSNR and SSIM as compared to SOTA methods.

2.2. The Transformer

Shallow Feature Extraction (SFE) consists of 3 convolu-
tional layers, with 2 layer normalizations in between. As
described in SwinIR [9], convolutional layers are better at
early visual processing.

Deep Feature Extraction 1 (DFE1) consists of 4 RSTB
blocks (the structure of the RSTB blocks is the same as in
SwinIR [9]) with 6 Swin Transformer Layers in each. This
module acts at the same dimensions (height and width) as
the LR image.

Resolve 1 (R1) upscales the image by ×2⌊n/2⌋, where n
is the scale factor for the Super-Resolution (n = 4 in our
experiments) using a PixelShuffle layer [17].

Deep Feature Extraction 2 (DFE2) consists of a single
RSTB block. This single block incurs exponentially higher
computational cost than the previous RSTB block, which
is why we use only one. We use this because this allows
global self-attention to be applied at a higher dimension and
can recover finer details.

Resolve 2 (R2) upscales the image by another ×2⌈n/2⌉,
again using PixelShuffle. This is both preceded and fol-
lowed by sets of 3 convolutional layers with 2 layer nor-
malizations in between. This module is responsible for the
final high-resolution refinement.

2.3. A Better Perceptual Loss

Our perceptual loss consists of 2 components. One is
based on VGG features, similar to previous works [9, 20].
For this component, we take the L1 losses between the out-
put feature maps for GθG(I

LR) and IHR at layers 16, 25
and 34 of the VGG19 network; we sum these using weights
0.5, 0.75 and 0.75 respectively. The second component is
based on Swin features, which with their global interactions
may be able to better guide the perceptual quality of the im-
age. For this component, we take the L1 losses between the
output feature maps for GθG(I

LR) and IHR at stage 3 of
the Swin-Tiny [11] network.

3. Experiments
3.1. Implementation Details

In the RSTB blocks, we use a window size of 8, channel
size of 120, and 6 attention heads per MSA module. We
train the network for ×4 Super-Resolution with a training
patch size of 32 and a batch size of 8 for 250,000 itera-
tions on the DIV2K dataset [1]. We adjust α, β and γ as
training goes on. We observed faster convergence in the
earlier stages using only the pixel loss (this will be fur-
ther explored in future work), so we train the network with
α = 1, β = 0, γ = 0.01 for the first 100,000 iterations,
then with α = 1, β = 1, γ = 0.1. We use the Adam opti-
mizer for both the generator and discriminator, with an ini-
tial learning rate of 0.0001, which is halved first at 50,000
iterations and then again at 100,000 iterations.

3.2. Results and Conclusion

For a holistic analysis, we compare our method to vari-
ous state-of-the-art on PSNR and SSIM scores. These re-
sults are presented in Table 1. As we can see, our model
scores quite low compared to SOTA. We observed that both
the PSNR and SSIM scores decrease after the 100,000 iter-
ation mark, as the perceptual loss is optimized more aggres-
sively.

Following this, we perform a qualitative comparison
with SwinIR [9] and Real-ESRGAN [19]. Some illustrative
images are shown on the following page. We observe that
our model produces images of significantly better percep-
tual quality; our images are also sharper and contain realis-
tic details. We attribute this to three things: our perceptual
loss which contains an extra transformer-based component;
our DFE2 module which acts upon a halfway upsampled
version of the image; and also our training method as de-
scribed in Section 3.1. Due to the page limit, more qualita-
tive comparison images are provided in the supplementary
material.
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