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Abstract. Automatic image colourisation methods applied independently
to each video frame usually lead to flickering artefacts or propagation of
errors because of differences between neighbouring frames. While this
can be partially solved using optical flow methods, complex scenarios
such as the appearance of new objects in the scene limit the efficiency
of such solutions. To address this issue, we propose application of blind
temporal consistency, learned during the inference stage, to consistently
adapt colourisation to the given frames. However, training at test time
is extremely time-consuming and its performance is highly dependent
on the content, motion, and length of the input video, requiring a large
number of iterations to generalise to complex sequences with multiple
shots and scene changes. This paper proposes a generalised framework
for colourisation of complex videos with an optimised few-shot training
strategy to learn scene-aware video priors. The proposed architecture is
jointly trained to stabilise the input video and to cluster its frames with
the aim of learning scene-specific modes. Experimental results show per-
formance improvement in complex sequences while requiring less training
data and significantly fewer iterations.

Keywords: Video colourisation, temporal consistency, deep video prior,
few-shot learning

1 Introduction

Video restoration is in increasing demand in the production industry in order to
both deliver historical content in high quality and to support innovation in the
creative sector [24]. Video colourisation in particular is still a challenging task
due to its ambiguity in the solution space and the requirement of global spatio-
temporal consistency. Prior to automatic colourisation methods, producers relied
on specialists to perform manual colourisation, resulting in a time consuming
and sometimes a prohibitively expensive manual process. Researchers have thus
endeavoured to develop computer-assisted methodologies in order to automate
the colourisation process and reduce production costs. Early methods relied on
frame-to-frame image colourisation techniques propagating colour scribbles [15,
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20, 33] or reference colours [6, 28, 31]. The problem that typically occurs when
processing is applied on a single frame without consideration of the neighbouring
frames is temporal flickering. Similarly, propagation of errors can occur if the
temporal dimension is not taken into account when characteristics (e.g colour)
of previous frame are transferred to the current frame. Improved results can be
obtained by considering a more robust propagation and imposing refinements
with temporal constrains [1, 34].

Instead of improving temporal consistency using task-specific solutions, meth-
ods that generalise to various tasks can be applied. An example is the work
in [5], which proposes a general approach agnostic to a specific image processing
algorithm. The method takes the original video (black and white in the case
of colourisation) and the per-frame processed counterpart (initially colourised
version) and solves a gradient domain optimisation problem to minimise the
temporal warping error between consecutive frames. An extension of such an
approach takes into account object occlusions by leveraging information from a
set of key-frames [32]. Another example was proposed in [17], adopting a per-
ceptual loss to maintain perceptual similarity between output and processed
frames. However, most methods rely on a dense correspondence backend (e.g.
optical flow or PatchMatch [2]), which quickly becomes impractical in real-world
scenarios due to the increased processing time needed. A novel solution proposed
the use of Deep Video Prior by training a convolutional network on video con-
tent to enforce consistency between pairs of corresponding output patches [19].
The method solves multimodal consistency by means of Iteratively Reweighted
Training, which learns to select a main mode among multiple inconsistent ones
and discard those outliers leading to flickering artifacts. The main limitation is
the requirement to train in test time, which makes the method extremely time-
consuming in practice. For instance, training depends on the content, motion and
length of the input video, requiring a large number of iterations to generalise to
complex sequences with multiple shots and scene changes.

This paper proposes a framework for temporal stabilisation of frame-to-frame
colourised videos with an optimised few-shot training strategy to learn scene-
aware video priors. The proposed architecture is jointly trained to stabilise the
input video and to cluster the input frames with the aim of learning scene-specific
modes. Learnt embeddings are posteriorly injected into the decoder process to
guide the stabilisation of specific scenes. A clustering algorithm for scene seg-
mentation is used to select meaningful frames and to generate pseudo-labels to
supervise the scene-aware training. Experimental results demonstrate the gener-
alisation of the Deep Video Prior baseline [19], obtaining improved performance
in complex sequences with small amounts of training data and fewer iterations.

2 Related work

2.1 Video colourisation

Although several works attempted to solve video colourisation problem as an
end-to-end fully automatic task [18], most rely on single frame colourisation. This
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is because image colourisation, compared to video colourisation, achieves higher
visual quality and naturalness. Propagation methods are commonly used to sta-
bilise the temporal coherence between frames. For instance, the work in [16] pro-
pose Video Propagation Networks (VPN) to process video frames in an adaptive
manner. VPN approach applies a neural network for adaptative spatio-temporal
filtering. First it connects all the pixels from current and previous frames and
propagates associated information across the sequence. Then it uses a spatial
network to refine the generated features. Another example is the Switchable
Temporal Propagation Network [21], based on a Temporal Propagation Network
(TPN), which models the transition-related affinity between a pair of frames in a
purely data-driven manner. In this way, a learnable unified framework for prop-
agating a variety of visual properties from video frames, including colour, can be
achieved. Aiming at improving the efficiency of deep video processing, colouri-
sation and propagation can be performed at once. An example is the method
in [34] that is based on a recurrent video colourisation framework, which com-
bines colourisation and propagation sub-networks to jointly predict and refine
results from a previous frame. A direct improvement is the method in [1] that
uses masks as temporal correspondences and hence improves the colour leakage
between objects by wrapping colours within restricted masked regions over time.

2.2 Deep Video Prior

Methods for temporal stabilisation usually promote blind temporal consistency
by means of dense matching (optical flow or PatchMatch [2]) to define a regulari-
sation loss that minimises the distance between correspondences in the stabilised
output frames [5]. Such methods are trained with large datasets with pairs of
grayscale inputs and colourised frames. Notice that such frameworks are blind
to the image processing operator and can be used for multiple tasks such as
super-resolution, denoising, dehazing, etc. In contrast, Deep Video Prior (DVP)
can implicitly achieve such regularisation by training a convolutional neural net-
work [19]. Such method only requires training on the single test video, and no
training dataset is needed. To address the challenging multimodal inconsistency
problem, an Iteratively Reweighted Training (IRT) strategy is used in DVP
approach. The method selects one mode from multiple possible modes for the
processed video to ensure temporal consistency and preserve perceptual quality.

2.3 Few-shot learning

Few-shot learning was introduced to learn from a limited number of examples
with supervised information [10,11]. For example, although current methods on
image classification outperform humans on ImageNet [8], each class needs suf-
ficient amount of labelled images, which can be difficult to obtain. Therefore,
few-shot learning can reduce the data gathering effort for data-intensive appli-
cations [30]. Many related topics use this methodology, such as meta-learning
[12,25], embedding learning [3,27] and generative modelling [9,10]. The method
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Fig. 1. Proposed framework for temporal stabilisation of frame-to-frame colourised
videos. In addition to the DVP baseline, a scene segmentation and a few show training
is used to learn scene-aware video priors.

proposed in this paper uses few-shot learning as training strategy to reduce
processing time and to generalise to long and complex video sequences.

3 Method

This section describes the proposed extension of DVP baseline for multiple
scenes, followed by the optimised few-shot training strategy which enables re-
duced processing time by removing the time response of DVP conditioned to
the number of input frames. Finally, DVP architecture is modified by adding a
classification sub-network which clusters the input frames with the objective of
learning scene-specific priors.

3.1 Extension of DVP to multiple scenes

Given a grayscale input sequence {It}Tt=1 of T frames and its colourised coun-
terpart {Pt}Tt=1 created using an image colourisation operator F , the goal is to
learn the mapping Ĝ(θ) : {Pt}Tt=1 −→ {Ot}Tt=1, such that {Ot}Tt=1 is a tempo-
rally stable output without flickering artifacts and θ are the network parame-
ters. Due to the superior performance of image colourisation compared to video
methods [5, 18], an image operator is applied frame-to-frame and the proposed
framework is used to sort out temporal issues. Therefore, from a random initial-
isation, Ĝ(θ) is optimised in each iteration by means of the reconstruction loss
Ldata (e.g. L1 distance) between Ĝ(It; θ) and Pt:

argmin
θ

Ldata(Ĝ(It; θ), Pt). (1)
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As shown in Figure 1, the proposed method extends the DVP framework [19]
for video sequence with multiple scenes. In particular, the proposed method
defines a scene as a change of content, e.g. a camera shot, appearance of new
objects, etc. In particular, the input sequence {It}Tt=1 of T frames is divided into
S scenes, where typically S << T , and {st}Tt=1 is the scene index for each frame.
In order to learn scene-specific modes, the proposed network not only learns to
stabilise the input sequence, but also to cluster its frames into different scenes by
generating a class distribution vector yt ∈ RS . As shown in Figure 2, an external
feature vector ft (from frame It) is provided in order to guide the clustering
process. ft can be obtained from a suitable neural network, e.g. from VGG-
16 classification head [26]. Finally, yt is used to generate scene-specific priors
which are posteriorly injected into the different stages of the network decoder.
Therefore, the proposed model combines two different sub-models, denoted by
Ĝ(θ) = {Ĝ1(θ1), Ĝ2(θ2)}, where θ = {θ1, θ2} are all the network parameters,
Ĝ1(θ1) : {Pt}Tt=1 −→ {Ot}Tt=1 and Ĝ2(θ2) : {ft}Tt=1 −→ {yt}Tt=1.

The neural network is then trained to jointly improve the temporal consis-
tency of the input video frames {It}Tt=1 (enforcing {Ot}Tt=1 to be close to {Pt}Tt=1)
and classify them into the corresponding scenes {st}Tt=1. Following DVP baseline,
an IRT strategy is used to address the problem of averaging when the difference
of multiple modes is large (e.g. pixel with more than one possible colourisation
solution). In particular, a confidence map Ct is used to enforce the selection of
a main mode per pixel from multiple modes, while it ignores the outliers (minor
modes leading to flickering artifacts). In practice, DVP doubles the number of
output channels (e.g. 6 channels for RGB images) to obtain two output versions:
a main frame Omain

t and an outlier frame Ominor
t . The confidence map Ct,i at

iteration i is calculated by:

Ct,i =

{
1 d(Omain

t,i , Pt) < max{L1(O
minor
t,i , Pt), δ}

0 otherwise
, (2)

where d is the function to measure the distance between pixels and δ is a thresh-
old. Therefore, the model parameters at iteration (i+1) can be optimised using
Ct,i which guides the training loss:

θi+1 =argmin
θ

{Ldata(Ct,i ⊙Omain
t,i , Ct,i ⊙ Pt)+

+ Ldata((1− Ct,i)⊙Ominor
t,i , (1− Ct,i)⊙ Pt)}.

(3)

Then, a multi-loss function is proposed combining the IRT loss LIRT between
Ĝ1(It; θ1) and Pt, and the cross-entropy loss Lclass between Ĝ2(ft; θ2) and st:

LT = LIRT

(
Ĝ1(It; θ1), Pt

)
+ Lclass

(
Ĝ2(ft; θ2), st

)
. (4)

3.2 Few-shot training strategy

The main limitation of DVP is the long processing time due to the need for
training at inference time. This fact makes the method impractical for long
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sequences. This paper proposes to speed up the training process reducing the
number of iterations by means of a few-shot training strategy. Such strategy
selects a reduced set of N frames {In}n∈J ⊂ {It}Tt=1, where J ⊂ {1, 2, . . . T}
and N < T . Notice that for completeness In : ̸= It. Selected few-shot samples
are then used to train the model for generalisation to the remaining frames during
inference time. The proposed model makes this solution feasible thanks to its
scene-aware capacity to generalise to variable content. Such approach makes
the model more robust for processing of sequences with changes (e.g. with high
motion) as it temporally downsamples the input.

The selection of N frames for few-shot training is based on a twofold process:
scene segmentation and selection of representative frames per scene. Scene seg-
mentation is performed in an unsupervised way via clustering of deep features
{ft}Tt=1 with KMeans algorithm [22]. Dimensionality reduction is performed by
Principal Components Analysis (PCA) in order to reduce complexity and shorten
the clustering time. The number of scenes (e.g. number of clusters) is unknown
and variable for each input video. Hence a suitable number of clusters is com-
puted by running KMeans K times and selecting the elbow of the averaged
distortion curve, where the distortion of each sample is computed relative the
centroid of its cluster. This method allows a fast and effective scene segmentation
approach.

Unsupervised clustering of input frames allows the generation of pseudo-
labels for training the proposed classification sub-model. Notice that clustering
errors will be mitigated thanks to the few-shot training, since the trained classi-
fier will generalise to unseen frames (and potential uncertainties between scenes)
during inference time. After segmentation of the input video into the scenes, suit-
able frames are selected from each scene by sub-clustering frames in that scene
to cover a balanced span of different content. KMeans is applied again with
a fixed number of clusters and a number of frames is randomly sampled from
each sub-cluster. The number of selected frames per cluster and sub-clusters is
proportional to the total number of frames in the given sub-cluster.

3.3 Network architecture

As shown in Figure 2, the architecture of the model proposed at Section 3.1
is composed of two sub-networks (denoted by Ĝ1(θ1), Ĝ2(θ2)). Its inputs are a
frame It ∈ R1×H×W , where H × W are the input dimensions, and its feature
vector ft ∈ R1×d (from VGG-16 classification head), where d are the number
of its dimensions. The proposed architecture outputs two colour stabilised ver-
sions (main and minor frames) Ot ∈ R6×H×W of the input frame, and a class
distribution vector yt ∈ R1×S , which is the product of clustering the input to a
particular scene.

It is processed by 4 encoder blocks which downsample the input by a factor
of 2, generating Ibt ∈ Reb×Hb×Wb , where b = 1, . . . 4 is the block index, eb is

the number of dimensions and {Hb,Wb} = max
(
25, {H,W}

2b

)
. The bottleneck

block converts I4t into O5
t ∈ Ro5×H5×W5 , where o5 are the number of output
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Fig. 2. Proposed architecture for stabilisation of frame-to-frame colourised videos. The
model not only learns to stabilise an input sequence, but also to cluster the input frames
into different scenes, by generating a class distribution vector yt.

dimensions. In parallel, ft is processed by 2 linear layers to generate deep em-
beddings f1

t ∈ R1×d, f2
t ∈ R1×S . f2

t is both activated with a softmax operation
to generate the class distribution vector yt and with a sigmoid operation to
generate the scene-aware mask at that will be injected into the bottleneck and
decoder blocks. at is processed by a sequence of linear layers which generate 5
scene-aware embeddings mb

t ∈ R1×ob , where b = 1, . . . 5 and ob are the dimen-
sions of the bottleneck and decoder outputs. Finally, as shown in Figure 3, mb

t

are injected into the corresponding blocks as follows: (1) mb
t is activated with

a SoftPlus operation (smooth approximation of ReLU) and spatially repeated
to generate a volume M b

t ∈ Reb×Hb×Wb , (2) M b
t is element-wise multiplied to

each pre-activation within the corresponding block. 4 decoder blocks with skip
connections are then applied to upsample the inputs by factor of 2, generating
Ob

t ∈ Rob×Hb×Wb , where b = 1, . . . 4. Finally, a decoder head is applied to map
O1

t into the output frames Ot.

4 Experiments

4.1 Training strategy

As shown in DVP, the network needs to be initialised with the main mode
in order to guide the main outputs towards a specific mode. DVP selects the
first image as reference for the main mode and pre-trains the network for a
given number of iterations. However, when the reference image contains outliers,
and those are treated as main mode, the performance of such approach is not
satisfactory. To address that, this work proposes the use of colour histograms to
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Fig. 3. The proposed decoder block conditioned by the scene-wise embedding mb
t .

Notice that a similar architecture applies to the bottleneck, injecting the embedding
vector into the pre-activations.

detect outliers when specific bins present high variance across the sequence. In
particular, colourised frames Pt are converted into CIE La*b* colour space [7],
and 2D colour histograms Ht ∈ RQ×Q are obtained by matrix multiplication of
individual histograms for a* and b* channels, where Q is the number of bins.
Next, a mask M̄ ∈ RQ×Q is computed to locate those bins present in all the
frames. Hence, bins out of the mask will represent an outlier. M̄ =

∏T
t=1 Mt,

where Mt masks the bins different than zero. Finally, main mode reference frame
Pt∗ is obtained, where t∗ = argmint

∑
Ht ⊙ (Mt − M̄).

On the other hand, as shown in Figure 4, few-shot training might lead the
network into mode collapse, rapidly converging into a random state. Mode col-
lapse is detected when the Area Under the Curve (AUC) of the generated colour
histograms vary below a threshold during a given number of iterations. In this
case, the initial pre-training is repeated with random initialisation of the network
weights. Due to the significant difference of complexity, classifier and stabiliser
(U-Net) sub-networks are optimised using different learning rates. Overall, Adam
optimiser is adopted, using a learning rate of 10−4 for θ1 and 10−6 for θ2. All
the experiments are performed with a single GPU and using a batch size of 8
samples. Initial pre-training iterations are set to 350, and 150 frames are used
for few-shot training.

Following DVP [19], this work uses the test set collected by [5], composed by
20 videos of around 200 frames from Videvo dataset3, and extended with 8 longer
videos from Videvo and Hollywood2 dataset [23], to evaluate the performance
for more complex content.

4.2 Evaluation metrics

Temporal inconsistency. DVP uses wrapping error to measure temporal in-
consistency by means of optical flow. However, the quality of optical flow compu-
tation and the corresponding occlusion mask might decrease when dealing with

3 https://www.videvo.net/

https://www.videvo.net/
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Fig. 4. Example of mode collapse during initial pre-training. The AUC invariance
during the initial iterations indicates convergence to a random state, which affects the
performance of the posterior IRT training.

flickering content. To mitigate this issue and to better capture colour artifacts,
histogram inconsistency is adopted to measure the temporal similarity in the
colour domain. Being Ht and Ht−1 the colour histograms of frames t and t− 1,
respectively, temporal histogram inconsistency Ehist is defined as a symmetric
χ2 distance as follows:

Ehist = 2

Q2∑
q=1

(Ht,q −Ht−1,q)
2

(Ht,q +Ht−1,q) + ϵ
, (5)

where ϵ prevents infinity overflows and Q is the number of bins.

Performance degradation. Temporal stabilisation has to be achieved without
degrading the original colourisation. Since stabilised ground truth is not avail-
able, this work uses data fidelity Fdata between {Ot}Tt=1 and {Pt}Tt=1 as follows:

Fdata =
1

T

T∑
t=1

PSNR (Pt, Ot) . (6)

Notice that data fidelity can decrease when frames contain large amount of
outliers. Therefore, perceptual quality is also evaluated using Fréchet Inception
Distance (FID) [14] with the ground truth.

4.3 Results

Table 1 shows quantitative comparison results between DVP method [19], our
method and the proposed ablations in Section 4.4. Two image-based fully-automatic
colourisation methods are considered: colourful image colourisation (CIC) [35]
and ChromaGAN (CGAN) [29]. Reference-based image colourisation method



10 Blanch, M.G et al.

t
=

3
8
0

t
=

3
3
0

t
=

9
0

t
=

1

{Pt}Tt=1 DVP [19] DVP (few-shot) Ours

Fig. 5. Qualitative comparison with DVP method and the proposed ablations. DVP
with few-shot training took around the same processing time as our approach, but
failed to generalise to multiple scenes. Moreover, our method achieved better fidelity
and perceptual quality than the original DVP.

XCNET [4] is also considered. Such methods which colourise frames based on a
reference image introduce even larger flickering issues than fully auto-colourisation
based networks. References are sampled from Imagenet dataset [8] using the cor-
respondence recommendation pipeline proposed in [4,13]. Finally, quality of the
original predictions {Pt}Tt=1 obtained using CIC method is studied to evaluate
the effect of the proposed stabilisation. Moreover, Figure 6 shows the processing
time of both DVP and our method in relation to the number of frames.

As can be seen from Ehist results, both DVP and our method significantly
increase the temporal consistency compared to the original predictions, and al-
though DVP obtains slightly better results, our method significantly reduces
the processing time for long scenes. The drop in performance when using XC-
NET is due to the colourfulness of the corresponding predictions and the higher
concentration of flickering artefacts, compared to CIC or CGAN.

As shown in Figure 5, the frames at different times in the same shot suffer
from inconsistent colourisation (notice the same object across various frames
with different colour). DVP and DVP with few-shot training temporal both
provide more consistent results, but still the main mode is either not correctly
chosen or the colours are plain, resulting in less natural appearance. This is re-
flected in data fidelity results, where our method achieves the best performance.
FID also confirm this fact, as DVP lowers the perceptual quality of the origi-
nal predictions due to its strong stabilisation and degradation of input colours.
Finally, as shown in Figure 6, the few-shot strategy allowed a fix amount of
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Table 1. Ehist, Fdata and FID comparison for different colourisation methods.

Method
Ehist ↓

{Pt}Tt=1 CIC [35] CGAN [29] XCNET [4]

DVP [19]

20.96

2.30 1.58 3.30
Ours 3.08 2.54 3.59

DVP (few-shot) 3.75 3.79 3.10
Ours (first frame) 1.39 2.14 2.69

Method
Fdata ↑ [dB]

CIC [35] CGAN [29] XCNET [4]

DVP [19] 19.12 19.32 18.94
Ours 28.63 30.31 26.56

DVP (few-shot) 18.14 18.47 18.67
Ours (first frame) 28.46 30.21 26.40

Method
FID ↓

{Pt}Tt=1 CIC [35] CGAN [29] XCNET [4]

DVP [19]

122.74

126.38 111.16 100.21
Ours 121.16 105.65 97.96

DVP (few-shot) 129.68 114.98 102.22
Ours (first frame) 119.76 104.03 99.92

training iterations, resulting into a flat time response independent to the length
of the input sequence. Note that the total time may increase proportionally to
the number of scenes, due to the individual initial pre-training per scene.

4.4 Ablations

An ablation study is performed to analyse the importance of the proposed scene-
aware architecture. First, DVP is tested with the proposed few-shot training
strategy. As shown in Table 1 and Figure 5 (DVP few-shot), without using a
classification sub-network, DVP is unable to generalise to complex sequences and
the input colours are significantly degraded. This drop in performance proves
the importance of the classification sub-network to perform effective few-shot
training. Finally, a second ablation is performed to evaluate the proposed ini-
tialisation mechanism in Section 4.1, which proposes the best reference for main
mode per scene by means of histogram characteristics. As shown in Table 1
(ours first frame), a drop in performance is observed when using the first frame
as main mode reference (as DVP proposes), proving the effectiveness of the pro-
posed methodology. Notice that original DVP performance could be improved
by using the same initialisation mechanism.
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Fig. 6. Comparison of processing time for all test sequences. Notice the significant
increase of the processing time for DVP when the number of frames increases.

5 Conclusions

This paper proposed a general framework for temporal stabilisation of frame-
to-frame colourised videos using scene-aware deep video priors. The framework
includes an optimised few-shot training strategy to reduce the processing time
of DVP baseline [19] by removing its time response conditioned on the number
of input frames. In order to handle complex sequences with multiple scenes,
the DVP architecture is modified by adding a classification sub-network which
clusters the input frames with the objective of learning scene-specific priors.
Experimental results show that our method improves data fidelity and perceptual
quality and achieves similar temporal consistency to DVP while reducing the
processing time in long sequences. As future work, model efficiency can be further
improved by simplifying the network architecture or by using techniques such as
pruning or weights quantisation. Moreover, finer tuning of colourisation could be
achieved by improving the scene segmentation process in order to obtain more
precise scene priors. Finally, an unified framework for video colourisation can
be obtained by integrating the deep video prior methodology into an end-to-end
video colourisation pipeline.
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Fig. 7. Evaluation in comparison with DVP method and processed frames at different
timestamps.
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