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Abstract. Temporal action detection (TAD) is an important yet chal-
lenging task in video analysis. Most existing works draw inspiration from
image object detection and tend to reformulate it as a proposal gener-
ation - classification problem. However, there are two caveats with this
paradigm. First, proposals are not equipped with annotated labels, which
have to be empirically compiled, thus the information in the annota-
tions is not necessarily precisely employed in the model training process.
Second, there are large variations in the temporal scale of actions, and
neglecting this fact may lead to deficient representation in the video fea-
tures. To address these issues and precisely model TAD, we formulate
the task in a novel perspective of semantic segmentation. Owing to the 1-
dimensional property of TAD, we are able to convert the coarse-grained
detection annotations to fine-grained semantic segmentation annotations
for free. We take advantage of them to provide precise supervision so as
to mitigate the impact induced by the imprecise proposal labels. We
propose a unified framework SegTAD composed of a 1D semantic seg-
mentation network (1D-SSN) and a proposal detection network (PDN).
We evaluate SegTAD on two important large-scale datasets for action
detection and it shows competitive performance on both datasets.

1 Introduction
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Fig. 1: Proposal Annotations. Proposals different in locations, lengths, and
content are assigned the same label if they have the same IoU.

Nowadays, millions of videos are produced every day, and high demand arises
for automatic video processing and analysis. To this end, various tasks have
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emerged, for example, action recognition [19], active speaker detection [2], video-
language grounding [41], temporal action localization [26,42]. Among those tasks,
temporal action detection in untrimmed videos, in particular, is one of the fun-
damental yet challenging tasks. It requires not only to recognize what actions
take place in a video but also to localize when they start and end.

Most recent works in the literature regard this task as a temporal version of
object detection and tackle it by adapting the 2-dimensional solutions on im-
ages (e.g., Faster R-CNN [36]) to the 1-dimensional temporal domain for videos
[23,5,47,17]. A conventional pipeline is to first identify candidate action segments
(i.e., proposals) by analyzing the entire video sequence and then learn to score
each segment with an empirically compiled label for each proposal. This object-
detection inspired framework has brought significant improvement on the action
detection performance [17], especially with the aid of deep neural network in re-
cent years [47,5,48,27]. However, it lays two caveats that might lead to imprecise
action detection modeling.

First, proposals are not accompanied by any annotated labels from the
dataset since they are generated on the fly. Their training labels have to be man-
ually compiled based on the ground-truth action annotations, i.e., the start/end
timestamps of actions in each video and their corresponding categories. A com-
mon practice is to compare each proposal to each ground-truth action in the
video in terms of some metric (e.g., temporal Intersection over Union) and use
a preset threshold to determine whether a proposal is positive or negative with
respect to each category. However, this is obviously not an optimal approach
considering that the mapping between action annotations and proposal anno-
tations are not bijective (as shown in Fig. 1). Noise is inevitably introduced to
the compiled proposal labels regardless of what metric or threshold is adopted,
resulting in imprecise modeling. Note that even in object detection, it is still
an open question on how to identify positive and negative proposals, which is
crucial to detection performance [52].

Second, object detection is a relatively coarse-grained problem that does not
identify every single pixel but predicts a rectangular box surrounding an entire
object. However, videos especially in large-scale datasets, e.g., ActivityNet [10],
HACS [55], Ego4D [14] contain actions of dramatically varied temporal duration -
from less than a second to minutes. Therefore, shifting from the image domain to
the video domain without adapting to the video diversity could lead to deficient
feature representation (e.g., burying short actions and under-representing long
actions by imprecisely modeling temporal correlations), as well as misalignment
between proposals and their receptive fields [5].

To address these issues, in this paper, we propose to formulate the task of
temporal action detection (TAD) in a novel perspective with semantic segmen-
tation. In the image 2-dimensional (2D) domain, much more effort is demanded
to obtain finer-grained annotations for the tasks such as semantic segmenta-
tion, considering that not all pixels in a detection bounding box are contained
in the object. In contrast, the task of video TAD requires only 1-dimensional
(1D) localization of actions — along the temporal domain. Therefore, all frames
within the action boundaries naturally belong to the action category. The detec-
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tion annotations can be bijectively transformed to segmentation labels without
extra effort. We propose a unified TAD framework to take advantage of the fine-
grained prediction of semantic segmentation for more precise detection, dubbed
as SegTAD. SegTAD contains a 1D semantic segmentation network to learn the
category of each single frame using the segmentation labels, which are directly
transformed from the detection annotations without introducing any label com-
pilation noise. Regarding the second issue, we design SegTAD modules based on
atrous and graph convolutions to precisely represent actions of various temporal
duration. The main contributions are:
1) We formulate TAD in a novel perspective of semantic segmentation and pro-
pose a unified TAD framework SegTAD, which is composed of a 1D semantic
segmentation network (1D-SSN) and a proposal detection network (PDN).
2) In 1D-SSN, we design an hourglass architecture with a module of parallel
astrous and graph convolutions to effectively aggregate global features and multi-
scale local features. In PDN, we incorporate a proposal graph to exploit cross-
proposal correlations in our unified framework.
3) The proposed SegTAD achieves competitive performance on two representa-
tive large-scale datasets ActivityNet-v1.3 [10] and HACS-v1.1 [55].

2 Related Work

2.1 Temporal Action Detection

Concurrent TAD methods tend to adopt the two-stage framework: 1) generating
candidate action segments (i.e., proposals) from the video sequence; 2) cropping
each proposal out of the sequence, and classifying each proposal to obtain its
confidence score. A large number of these methods focus on improving the first
stage to generate proposals with high recall, applying an off-the-shelf classifier
(e.g., SVM) to get the detection results [3,17,9,29,11]. Some other methods focus
on the second stage, seeking to build more accurate classifiers on proposals pro-
duced by other proposal methods (e.g., sliding windows, the above-mentioned
first-stage methods) [39,38,51,57,35]. The third category of methods propose uni-
fied approaches, where the features of different frames are aggregated and the
actions are predicted from the same network [16,5,47,50,48,30,25,22,54]. Our pa-
per belongs to the third category. Among these methods, our SegTAD is related
to but essentially different from them in the following aspects.

Snippet-level classification. Multiple methods have identified the coarse
granularity and regular distribution issues of anchor-based proposals, such as
BSN [25], TAG [57], MGG [29], and CTAP [11]. They have proposed to incorpo-
rate snippet-level proposals as a supplement or replacement to the anchor-based
ones. They learn a binary classifier for each snippet, either by a 2D convolutional
neural network (CNN) on each snippet [11,57] or applying a temporal CNN on
the entire sequence [29,25]. By this means, they obtain the probability of being
an action/start/end for each snippet, based on which to generate proposals with
flexible duration. In addition, the second-stage method CDC [38] also classifies
each snippet, but the purpose is to refine an existing proposal instead. In this
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paper, the proposed SegTAD directly formulates a 1D semantic segmentation
problem to classify every single frame into different action categories. It enables
the use of large temporal resolution and supports multi-scale feature aggregation
with the proposed PAG module. Moreover, it doesn’t rely on the actionness/s-
tartness/endness scores to generate proposals as in TAG or BSN.

Snippet-and-snippet correlations. The method G-TAD [48] exploits tem-
poral correlations between snippets by adopting a graph convolutional network
(GCN). It supports limited temporal resolution due to its lack of multi-scale
design and the complexity constraint of GCN when more frames are utilized,
consequently sacrificing actions of short duration. Comparatively, our SegTAD
adopts an hourglass architecture with an encoder and decoder, and only apply
graph convolutions in the intermediate layer with the smallest resolution. In this
way, it aggregates global information while preserving the temporal resolution.

Proposal-and-proposal correlations. BMN [22] constructs a boundary
map with densely-distributed proposals and apply convolutions on the map
to utilize the correlations between proposals, whereas 2D-TAN [53] presents
a sparse 2D temporal feature map to represent and correlate proposals. The
second-stage method P-GCN [51] uses GCNs [28] on proposals obtained by other
methods to improve the proposal scores and boundaries. Our SegTAD incorpo-
rates graph and edge convolutions to our unified detection framework to exploit
cross-proposal correlations. Compared to the standalone P-GCN [51], which is
essentially a proposal post-processing method and does not consider correlations
between frames, SegTAD jointly learns the graph network with the 1D semantic
segmentation network and enhances feature representations via cross-frame and
cross-proposal aggregation.
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Fig. 2: Illustration of our proposed SegTAD architecture. Input: a se-
quence of video frames; Output: scored candidate actions. Top: 1D Semantic
segmentation network (1D-SSN) that learns to classify each frame in the se-
quence. We design a module of parallel atrous and graph convolutions (PAG)
to effectively aggregate global features and multi-scale local features. Bottom:
Proposal detection network (PDN) that scores each candidate action. Graph
convolutions are utilized to exploit correlations between proposals.
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2.2 Object Detection and Semantic Segmentation

In the image domain, object detection [13,12,36,34,6] is a coarse-grained predic-
tion problem, whose output is a rectangular bounding box that surrounds an
object in the image. A widely adopted framework for tackling this task is the
two-stage method (e.g., R-CNN [13], Fast R-CNN [12], and Faster R-CNN [36]),
which first generates candidate proposals from the original image, and then runs
a classifier for each proposal. Recent TAD methods tend to draw inspiration from
these object detection methods. But by noticing the 1-dimensional property of
TAD problem, we see that besides object detection, TAD has another analogy
in the image domain, which is semantic segmentation.

Semantic segmentation [37,31,7,20,18] is a fine-grained prediction task that
predicts the class label of every pixel in an image. Thus, annotating for segmen-
tation usually requires extraordinarily more efforts than for object detection.
Compared to object detection which resorts to proposals, semantic segmenta-
tion usually adopts a different framework, which seeks to preserve the dense
grid of the input image while learning its high-level semantic features with a
convolutional network. Representative works are U-Net [37] and FCN [31], etc.
In videos, temporal semantic annotations and TAD annotations are bijectively
transferable, so no extra efforts are required to annotate segmentation. In this
work, taking advantage of this discovery, we utilize the semantic segmentation
methodology to formulate TAD.

3 Proposed SegTAD

3.1 Problem Formulation and SegTAD Framework

The task of temporal action detection (TAD) is to predict a set of actions

Φ = {ϕm = (tm,s, tm,e, cm, sm)}Mm=1 given a sequence of T video frames {It ∈
R3×H×W }Tt=1, where tm,s and tm,e are action start and end time respectively,
cm is action label, and sm is prediction confidence. To achieve this, we first
transform each frame It to a 1-dimensional feature vector xt ∈ RC via a feature
extraction network (see Sec. 4.1). Using the 1D features xt as input, we apply
our proposed 1D semantic segmentation network (1D-SSN), followed by a pro-
posal detection network (PDN). The 1D-SSN temporally aggregates features to
learn to segment the video sequence in the frame level according to the action
annotations, and generates semantic features yt ∈ RC′

for each frame. The PDN
learns to score each candidate action and further refines its boundaries. The two
components 1D-SSN and PDN are trained in a unified architecture.

We illustrate the entire architecture of SegTAD in Fig. 2. It shows two main
components: 1D semantic segmentation network and proposal detection network,
which will be described in the following subsections, respectively.

3.2 1D Semantic Segmentation Network

Different from conventional TAD works, which perform prediction in the coarse
segment level and compile segment labels from ground-truth action annotations,
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we use 1D semantic segmentation (1D-SSN) to learn to predict for each single
frame. Based on our 1D-SSN, we are able to take advantage of the original true
action annotations without introducing any label noise. In the following, we first
describe the 1D-SSN architecture that aggregates features from a global temporal
range as well as multi-scale local range. Then, we present our segmentation loss
that uses the original action annotations to train the segmentation network.

1D-SSN Architecture Sufficient semantic information from a long temporal
range is essential for TAD. This is usually achieved by enlarging the receptive
field via strided 1D convolution or pooling. However, aggressively using these
operations will dramatically reduce the temporal resolution and severely impair
the feature representation of short actions.

To achieve a large receptive field without severely sacrificing temporal reso-
lution, we consider feature aggregation in two aspects: local feature aggregation
and global feature aggregation. The former aggregates features in a surrounding
temporal window to learn local patterns. We need to make it scale-invariant to
represent actions of different duration. The latter associates features in a global
range, not constrained in the neighborhood of each frame. This breaks the con-
straints of the temporal locations of each frame and makes use the correlations
between frames in the global context [48].

For the two aspects, we design an hourglass architecture with atrous and
graph convolutions in our 1D-SSN. It has the shape of an hourglass, containing
an encoder, a parallel module of atrous and graph convolutions (PAG), and a
decoder. The encoder temporally downscales the input features by a small ratio,
and the decoder is to restore the temporal resolution. The PAG module enables
local feature aggregation in multiple scales using atrous convolutions and global
feature aggregation via graph convolutions.

1D-SSN Details The encoder is comprised of a stack of L strided 1D con-
volution layers Conv1D(k=3,s=2), where k is the kernel size, s is the stride,
followed by the non-linear activation function ReLU. We only have L=3 such
layers in order not to overly downscale the features. It applies along the temporal
dimension on the input video feature sequence X=[x1,x2, . . . ,xT ]∈RC×T , where
C is the input feature dimension, and transforms it into a representation with

lower temporal resolution X′=[x′
1,x

′
2, . . . ,x

′
T/2L ]∈RC′×T/2L , where C ′ is the

new feature dimension. The encoder reduces the sequence temporal resolution
by a factor of 2L so as to reduce computation for the subsequent layers, as well
as to progressively increase the size of temporal receptive field.

The decoder upscales the temporal resolution of the featuresX′′ = PAG(X′),
where PAG stands for operations in the module of parallel atrous and graph con-
volutions (PAG) (detailed in following paragraphs). It contains a layer of linear
interpolation to rescale the features along the temporal dimension to the orignal
resolution. In order to complement the details information lost from the encoder,
we add a highway connection from the low-level features at the second Conv1D
layer in the encoder, which consists of Conv1D(k = 1, s = 1), batch normal-
ization and ReLU. Then we concatenate the output of this connection with the
interpolated features, and apply a Conv1D(k = 3, s = 1) layer to adaptively fuse
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them. With this hourglass (encoder-decoder) architecture, we gradually aggre-
gate features from frames further apart while preserving the temporal resolution
of the sequences.

The module of parallel atrous and graph convolutions (PAG) (Fig.
2) takes the encoded features X′ as input, and further enlarges the receptive
field and empower the features with scale-invariant capability. Considering that
a video sequence usually contains actions of various temporal duration, rang-
ing from a couple of seconds to minutes. Excessive pooling or using strided
convolutions could impair short actions as mentioned above, whereas long ac-
tions require large receptive field to be semantically represented. To adapt to
actions of variant temporal scales, we propose this PAG module, which contains
atrous convolutions to aggregate features from multi-scale local neighborhood,
and graph convolutions to aggregate features from global context. Note that
unlike G-TAD [48], which applies graph convolutions in every layer and conse-
quently incurs huge computation cost, we only have them in this intermediate
module after the resolution is reduced by the encoder. In this way, it aggregates
global information while preserving the temporal resolution.

Atrous convolutions systematically aggregate multi-scale contextual in-
formation without losing resolution. They are able to support expansion of the
receptive field [49] by filling in empty elements in the convolutional filter. Com-
pared to normal convolutions, they are equipped with a dilation ratio d to specify
the number of empty elements in the filter, reflecting the expansion ratio of the
receptive field. We use 4 parallel branches of 1D atrous convolutions with differ-
ent dilation ratios. The choice of dilation ratios will be discussed in Sec. 4.3.

Graph convolutions model the correlations among snippets in a non-local
context. We design a graph convolutional network in parallel with the multiple
branches of atrous convolutions. Specifically, based on the output features from

the encoder {x′
t}

T/2L

t=1 (we call x′
t features of a snippet in the following), we build

a graph denoted as Gs = {Vs, Es}. Vs = {vt}T/2L

t=1 refers to the graph nodes,
each corresponding to a snippet, and E denotes graph edges, which represent
the correlations between snippets. To model the correlations of snippets in a
global context, we construct the edges dynamically [45] according to the semantic
similarity between encoded snippet features rather than their temporal locations,
which are computed as minus mean square error (MSE) between two feature
vectors. If a snippet is among the top K nearest neighbors of another snippet in
terms of their semantic similarity, there is an edge connecting them.

With this graph, we apply one layer of edge convolutions to aggregate features
of connected nodes [45], formulated as

XGC = ([X′T , AX′T −X′T ]W)T , (1)

where A ∈ RT/2L×T/2L is the adjacency matrix defined by edge connections
between snippets, its (i, j)th element ai,j = 1 if there is an edge between the ith

and the jth snippets, and ai,j = 0, otherwise. For each snippet, AX′T aggregates
features from all its connected snippets in the whole sequence. The operation [·, ·]
concatenates the two feature vectors. W∈RC′×C′

denotes trainable parameters.



8 C. Zhao et al.

In order to aggregate the global context information along the temporal dimen-
sion, we add a global fast path that first does global average pooling and linearly
upsamples back to the original resolution. This mitigates the weight validity is-
sue when large dilation ratios are used [7]. Then we concatenate the output of
all atrous convolutional (AC) branches and the graph convolution (GC) network
as well as the global fast path (GP), formulated as

PAG(X′) = [XGC,X
1
AC, . . . ,X

B
AC,XGP]. (2)

Finally, a Conv1D layer followed by ReLU is applied to fuse all branches.

Segmentation Loss In 1D-SSN, we formulate TAD as a semantic segmen-
tation problem, and predict the category of each single frame to meet their
true categories. In the following, we describe how to generate predictions, and
formulate the segmentation loss using action annotations.

The output from the decoder in 1D-SSN is a sequence of aggregated feature
vectors Y = [y1,y2, . . . ,yT ] ∈ RC′×T . We use this to predict per-frame classifi-
cation labels. Suppose we have D action categories, applying one layer of linear
transformation and Softmax operation yields

pt = Softmax(WT
seg yt), (3)

where pt ∈ RD refers to the predicted label for tth frame, Wseg ∈ RC′×D

contains the parameters in the linear layer.
If we know the ground-truth label bt ∈ {1, 2, 3, . . . , D} of each frame, then

we can compute the segmentation loss using cross-entropy formulated as follows

Lseg = − 1

T

∑
1≤t≤T

∑
1≤d≤D

βt,d log pt,d, (4)

where βt,d = 1{bt = d} is the dth one-hot encoding of the label for the tth frame.
Now the question becomes how we obtain the segmentation label bt. Assume

that a video sequence is annotated with N actions Ψ = {ψn = (tn,s, tn,e, cn)}Nn=1,
where tn,s and tn,e denote the start and end time of the nth action instance, re-
spectively, and cn represents its category. This is a segment-level annotation,
without specifying the exact labels of each frame. However, due to the 1D char-
acteristic of TAD, we can easily transform this segment-level annotations to
finer-grained frame-level labels. It assigns a frame the label of an action if it falls
inside the action boundaries, otherwise, the frame is labeled as background. We
see that in the entire process, there is no hyper-parameter and the mapping is
bijective, which guarantees precise annotation transformation.

Additionally, considering that action boundaries are important for localize
an action, we introduce an auxiliary loss

Laux =
−
∑

1≤t≤T β
s
t log p

s
t + (1− βs

t ) log(1− pst )

T

=
−
∑

1≤t≤T β
e
t log p

e
t + (1− βe

t ) log(1− pet )

T
, (5)
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where βs
t , β

e
t ∈ {0, 1} are start and end labels that indicate whether a frame is

the first or last frame of an action. pst and pet are predicted confidence scores of
a frame being start and end of action, which are generated by

ps = Sigmoid(wT
s2ReLU(Conv1dk,s=3,1(Y;Ws1))) (6)

pe = Sigmoid(wT
e2ReLU(Conv1dk,s=3,1(Y;We1))) (7)

where Ws1 and We1 represent convolutional kernels, and ws2,we2 ∈ RC′×1 are
parameters of the linear layers.

3.3 Proposal Detection Network

Considering that the actions in the format of Φ = {ϕm = (tm,s, tm,e, cm, sm)}Mm=1
are not predicted directly by 1D-SSN, we need an extra detection head, for
which we design a proposal detection network (PDN). PDN takes the output
features from 1D-SSN along with our designed sparse segment patterns as input,
and generate predicted actions. This PDN takes advantage of cross-proposal
correlations via a graph network, and further enhances the representation of
each frame and each proposal.
PDN Architecture: As shown in Fig. 2, PDN takes the output features Y
from 1D-SSN as well as a sparse pattern of segments. In our framework, in order
to precisely detection short actions, we use a high temporal resolution L = 1000.
Therefore, it is cumbersome to enumerate all possible pairs of frames as proposals
as done in [48] and [22]. Instead, we design a sparse pattern of segments, which
covers a large variety of action duration and reduces computation compared to
dense segments. Let each element ui,j ∈ {0, 1} of the matrix U ∈ RL×L denote
whether the segment starting from ith frame and composed of j frames is selected
as a proposal. Its value is determined by the following equation

ui,j =

{
1, if i% η = 0 and j% η = 0;

0, otherwise.
(8)

where η=8 is a step size controlling the sparsity degree. With Φ={ϕm=(tm,s, tm,e)}Mm=1

being all M proposals specified by U, their features D={dm∈RC′}Mm=1 are ex-
tracted from video features Y based on SGAlign [48].

The proposals in the same video are highly correlated and utilizing this prop-
erty can enhance proposal representations [22]. To model correlations between
proposals from any temporal locations, we build a second graph Gp = {Vp, Ep} on
the proposals and take advantage of graph convolutions in the detection network.
Different from the graph Gs in 1D-SSN, each node in Gp refers to one proposal,
and the edges represent correlations between proposals. Another difference is
that the edges Ep here are constructed based on the temporal intersection over
union (tIoU) between proposals, as opposed to the dynamically determined edges
in 1D-SSN. We apply the same edge convolutions as shown in Eq. (1), but define
each element ai,j in the adjacency matrix A as an attention value computed as
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ai,j = dT
i dj/|di| · |dj | if there is an edge. We stack 3 layers of edge convolutions

in PDN.
In order to efficiently train the proposal network as well as to balance the

positive and negative samples, we need to sample from our M proposals. Ran-
domly sampling does not guarantee that the sampled proposals have consistent
edge connections with each other to form a meaningful graph. So a better strat-
egy is to sample neighborhoods of proposals rather than individual proposals.
We adopt the following sampling strategy based on the SAGE method [15]. We
first sample a small number of M0 seed proposals, including M0/2 positive and
M0/2 negative samples. Then for each seed proposal, we find its top K neighbors
based on its tIoU with other proposals, and put them into the sampling list. For
each of the K neighboring proposals, we find its top K neighbors from the re-
maining proposals, and add these K×K proposals into the sampling list as well.
Hereby, in the sampling list, we totally have M0(1 +K +K ×K) proposals, all
of which have their top K neighbors in the list. M0 = 50 and K = 4 by default.
In inference, we use all M proposals without sampling.
Detection Loss: The PDN enhances the feature representation of each proposal
by aggregating different proposals, formulated as D′ = PDN(D). We predict
proposals’ confidence of being actions using the following operation

S = Sigmoid(WT
det D

′), (9)

where Wdet ∈ RC′×2 contains the parameters in the linear layer to predict the
confidence scores. Note that S = [s1; s2] contains two different scores for each
proposal, each corresponding to one loss function we define in the following

Ldet = Lreg(hreg, s1) + Lcls(hcls, s2), (10)

where hreg is the tIoU between each proposals and their closest ground-truth
actions, and Lreg is computed using mean square errors. hcls = 1(hreg > τ),
where τ = 0.5 is an tIoU threshold determining a proposal’s binary label, and
Lcls is a binary cross-entropy loss similarly computed as either term in Eq. (5).

3.4 Training and Inference

Training: We train the proposed SegTAD end to end using the segmentation
loss and the detection loss, as well as the auxiliary loss as follows

L = Lseg + λ1Ldet + λ2Laux + λ3Lr, (11)

where Lr is L2-norm, λ1, λ2, λ3 denotes the weights for different loss terms,
which are all set to 1 by default.
Inference: At inference time, we compute the score of each candidate action
using the two scores predicted from the proposal detection network as sm =
sm,1×sm,2. Then we run soft non-maximum suppression (NMS) using the scores
and keep the top 100 predicted segments as final output.
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Table 1: Action detection result comparisons on validation set of
ActivityNet-v1.3, measured by mAP (%) at different tIoU thresholds and the
average mAP. G-TAD achieves better performance in average mAP than the
other methods, even the latest work of BMN and P-GCN shown in the second-
to-last block. (∗ Re-implemented with the same features as ours.)

Method 0.5 0.75 0.95 Average

Wang et al. [44] 43.65 - - -
Singh et al. [40] 34.47 - - -
SCC [16] 40.00 17.90 4.70 21.70
Lin et al. [24] 44.39 29.65 7.09 29.17
CDC [38] 45.30 26.00 0.20 23.80
TCN [8] 37.49 23.47 4.47 23.58
R-C3D [47] 26.80 - - -
SSN [57] 34.47 - - -
BSN [25] 46.45 29.96 8.02 30.03
TAL-Net [5] 38.23 18.30 1.30 20.22
P-GCN+BSN [51] 48.26 33.16 3.27 31.11
BMN [22] 50.07 34.78 8.29 33.85
BMN∗ [22] 48.56 33.66 9.06 33.16
I.C & I.C [56] 43.47 33.91 9.21 30.12

SegTAD (top-1 cls.) 49.86 34.37 6.50 33.53
SegTAD (top-2 cls.) 50.52 34.76 6.85 33.99

Table 2: Action detection results on HACS-v1.1, measured by mAP (%)
at different tIoU thresholds and the average mAP.

Method Validation Test
0.5 0.75 0.95 Average Average

SSN [55] 28.82 18.80 5.32 18.97 16.10
BMN [1] - - - - 22.10
S-2D-TAN [53] - - - - 23.49
SegTAD 43.33 29.65 6.23 29.24 28.90

4 Experimental Results

4.1 Datasets and Implementation Details

Datasets and Evaluation Metric. We conduct our experiments on two large-
scale action understanding dataset, ActivityNet-v1.3 [10] and HACS-v1.1
[55] for TAD. ActivityNet-v1.3 contains around 20, 000 temporally annotated
untrimmed videos with 200 action categories. Those videos are randomly divided
into training, validation and testing sets by the ratio of 2:1:1. HACS-v1.1
follows the same annotation scheme as ActivityNet-v1.3. It also includes 200
action categories but collects 50, 000 untrimmed videos for TAD. We evaluate
SegTAD performance with the average of mean Average Precision (mAP) over
10 different IoU thresholds [0.5:0.05:0.95] on both datasets.



12 C. Zhao et al.

Implementations. For ActivityNet-v1.3, we sample each video at 5 frames
per second and adopt the two-stream network by Xiong et. al. [46] pre-trained
on Kinetics-400 [4] to extract frame-level features, and rescale each sequence
into 1000 snippets as SegTAD input. For HACS, we use the publicly available
features extracted using an I3D-50 [4] model pre-trained on Kinetics-400 [4] and
temporally rescale them into 400 snippets. We implement and test our framework
using PyTorch 1.1, Python 3.7, and CUDA 10.0. In training, the learning rates
are 1e−5 on ActivityNet-1.3 and 2e−3 on HACS-v1.1 for the first 7 epochs, and
are reduced by 10 for the following 8 epochs. In inference, we leverage the global
video context and take the top-1 or top-2 video classification scores from the
action recognition models of [43] and [21], respectively for the two datasets, and
multiply them by the confidence score cj for evaluation.

0 200 400 600 800
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0.2

0.4

0.6
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1.0

1.2 Video v_0EewuppFjEw
ground-truth actionness scores

0 200 400 600 800
Frame Index

0.0

0.2

0.4

0.6

0.8

1.0

1.2 Video v_38ZxXyECPPU
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Fig. 3: Predicted per-frame classification scores compared to ground-
truth labels.We only plot the scores of the ground-truth category. Green curves
represent the ground-truth, and score = 1.0 represents the frames are inside
action, and score =0.0 otherwise. Purple curves represent the predicted scores.

4.2 Comparison to State-of-the-Art

In Table 1 and Table 2, we compare SegTAD with representative TAD works in
the literature. We report mAP at different tIoU thresholds and average mAP.

On ActivityNet-v1.3, SegTAD achieves competitive average mAP of 33.99%,
significantly outperforming the recent works I.C & I.C [56] and BMN [22].
Notably, BMN extracts video features from ActivityNet-finetuned model such
that the extracted features are more distinguishable on the target dataset. In
contrast, we use more general Kinetics-pretrained features. To achieve fair com-
parison, we also show the re-produced BMN experimental results with the same
features as ours, and our performance gain is even more remarkable. On HACS-
v1.1, SegTAD reaches 28.90% average mAP on the test set, surpassing both
the challenge winner S-2d-TAN [53] and BMN [22] by large margins. Compared
with ActivityNet-v1.3, HACS-v1.1 is more challenging because of its substantial
data-scale and precise segment annotations. Therefore, our superior performance
on HACS-v1.1 makes SegTAD more remarkable.

4.3 Ablation Study

We provide ablation study to demonstrate the importance of the proposed 1D
semantic segmentation network to the detection performance. Also we verify the
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Table 3: Effectiveness of our segmen-
tation network.

Segmentation loss 0.5 0.75 0.95 Avg.

✗ 49.15 33.45 3.81 32.45
✓ 49.86 34.37 6.50 33.53

Table 4: Different loss functions for
segmentation.

Segment. loss types 0.5 0.75 0.95 Avg.

Binary 49.35 33.77 4.07 32.79
SegTAD 49.86 34.37 6.50 33.53

Table 5: Ablating studies in PAG of
1D-SSN. AC: Atrous convolutions, GC:
graph convolutions, GP: global fast path.

PAG Branches mAP at different tIoUs

AC GC GP 0.5 0.75 0.95 Avg.

✗ ✓ ✓ 48.55 33.04 5.21 32.37
✓ ✗ ✓ 49.48 33.95 7.50 33.30
✓ ✓ ✗ 49.75 34.25 5.97 33.29

✓ ✓ ✓ 49.86 34.37 6.50 33.53

Table 6: Different sets of dilation ra-
tios of the AC branches.

Dilation ratios 0.5 0.75 0.95 Avg.

1, 2, 4, 6 49.58 34.14 5.58 33.25
1, 6, 12, 18 49.71 34.01 5.90 33.31
1, 10, 20, 30 49.86 34.37 6.50 33.53
1, 16, 32, 64 50.00 34.31 6.35 33.45

effectiveness of our design choice for the 1D semantic segmentation network (1D-
SSN) and proposal detection network (PDN). In Table 3, we compare SegTAD
to its variants of disabling the segmentation loss in the 1D-SSN component. We
can see that using the loss leads to obvious improvement compared to not using
it. In Table 4, we show the performance of replacing the segmentation loss using
a binary classification loss, which learns whether a frame is inside an action or
not. Our multi-class segmentation loss in SegTAD is obviously better.

In 1D-SSN, the module of parallel atrous and graph convolutions (PAG) is im-
portant to aggregate features from multiple scales. We ablate different branches
in PAG to show the performance change in Table 5. It shows that the network
with all three kinds of branches produce the best performance.

We also show the results of different sets of dilation ratios for the atrous con-
volution branches in Table 6 and choose 1, 10, 20, 30 due to its highest mAP. We
evaluate the effectiveness of our proposal detection network (PDN) by replacing
its each layer of edge convolutions with a layer of Conv1D(k = 1, s = 1) and
apply it on each single proposal independently. In this way, this variant cannot
make use of the cross-proposal correlations. We can see from Table 7 that using
graph convolutions brings significant improvement compared to independently
learning for each proposal. In Table 8, we compare different metrics to determine
the similarity between proposals: tIoU and distance between proposal centers.
We adopt tIoU in SegTAD due to its better performance.

4.4 Visualization of Segmentation Output

We visualize the output from the 1D semantic segmentation network and com-
pare to ground-truth labels in Fig. 3. Our output tightly matches the ground-
truth even for the video that contains many short action instances such as the
bottom example. Such accurate segmentation is important for learning distinc-
tive features for each frame, and consequently benefits the final detection.
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Table 7: Ablating the proposal detection network.

PDN layers 0.5 0.75 0.95 Avg.

Conv1D(k = 1, s = 1) 48.31 32.79 5.49 32.12
Graph convolutions 49.86 34.37 6.50 33.53

Table 8: Comparing different similarity metrics: temporal intersection
over union and center distance between proposals.

Node similarity metric 0.5 0.75 0.95 Avg.

Center distance 49.34 33.57 3.62 32.52
Temp. intersection over union 49.86 34.37 6.50 33.53
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6 Conclusion

In summary, we take a novel perspective to formulate TAD based on 1D semantic
segmentation to achieve more accurate label assignment and precise localization.
We propose SegTAD, which is composed of a 1D semantic segmentation network
(1D-SSN) and a proposal detection network (PDN). To suit the large variety of
action temporal duration, in 1D-SSN, we design a module of parallel atrous
and graph convolutions (PAG) to aggregate multi-scale local features and global
features. In PDN, we design a second graph network to model the cross-proposal
correlations. SegTAD is a unified framework that is trained jointly using the
segmentation and detection losses from both 1D-SSN and PDN, respectively. As
a conclusion, we would like to emphasize the need to focus more on the unique
characteristics of videos when dealing with detection problems in video.

Relevance to ‘AI for understanding and accelerating video editing’.
Given the boom of creative video content on various platforms, such as TikTok,
Reels, and YouTube, the tedious and time-consuming editing process urgently
needs to be transformed [32]. Our SegTAD is able to localize and recognize
actions in long untrimmed videos, which is needed by creative tasks such as
cutting for the movie editing [32,33]. More specifically, our well-trained model
that predicts the location and the type of human actions can be used to find the
places where the transition of the scene should happen.
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