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Abstract. Video Instance Segmentation (VIS) is a task that simulta-
neously requires classification, segmentation, and instance association
in a video. Recent VIS approaches rely on sophisticated pipelines to
achieve this goal, including RoI-related operations or 3D convolutions.
In contrast, we present a simple and efficient single-stage VIS frame-
work based on the instance segmentation method CondInst by adding
an extra tracking head. To improve instance association accuracy, a novel
bi-directional spatio-temporal contrastive learning strategy for tracking
embedding across frames is proposed. Moreover, an instance-wise tempo-
ral consistency scheme is utilized to produce temporally coherent results.
Experiments conducted on the YouTube-VIS-2019, YouTube-VIS-2021,
and OVIS-2021 datasets validate the effectiveness and efficiency of the
proposed method. We hope the proposed framework can serve as a simple
and strong baseline for other instance-level video association tasks.

Keywords: Video Instance Segmentation, Spatio-Temporal Contrastive
Learning, Temporal Consistency

1 Introduction

While significant progress has been made in instance segmentation [14, 4, 43, 28,
47, 41, 42, 37, 24, 30] with the development of deep neural networks, less attention
has been paid to its challenging variant in the video domain. The video instance
segmentation (VIS) [50, 52, 44, 17] task requires not only classifying and segment-
ing instances but also capturing the instance associations across frames. Such
technology can benefit a great variety of scenarios, e.g., video editing, video
surveillance, autonomous driving, and augmented reality. As a result, it is in
great need of accurate, robust, and fast video instance segmentation approach
in practice.

Previous researchers have developed sophisticated pipelines for tackling this
problem [51, 39, 50, 5, 2, 44, 1, 12]. Generally speaking, previous studies can be di-
vided into the categories of two-stage [51, 39, 50, 2, 12], feature-aggregation [27,
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Fig. 1. Speed-Accuracy trade-off curve on the YouTube-VIS-2019 validation set. The
baseline results are compared with the same ResNet-50 backbone for fair comparison.
We achieve best tradeoff between speed and accuracy. In particular, STC exceeds recent
CrossVIS [11] 1.9% mAP with similar running speed.

2] inspired from video object detection domain [55, 20, 19], 3D convolution-
based [1], transformer-based [44, 17], and single-stage [5, 52] methods. Two-stage
methods, e.g., MaskTrack R-CNN [50] and CompFeat [12], usually rely on the
RoIAlign operation to crop the feature and obtain the representation of an in-
stance for further binary mask prediction. Such the RoIAlign operation would
lead to great computational inefficiency. 3D convolution-based STEm-Seg [1]
holds huge complexity and could not achieve good performance. Transformer-
based VisTR [44, 17] could not handle long videos due to largely increasing
memory usage and needs a much longer training time for convergence. Feature-
aggregation methods [23, 40] enhance features through pixel-wise or instance-
wise aggregation from adjacent frames similarly to other video tasks, like video
object detection [20, 19, 45]. Although some attempts [5, 46, 52] have been made
to tackle VIS in a simple single-stage manner, their performances are still not
satisfying.

The key difference between video and image instance segmentation lies in
the need of capturing robust and accurate instance association across frames.
However, most previous works such as MaskTrack R-CNN [50], and CMask-
Track R-CNN [33] formulate instance association as a multi-label classification
problem, focusing only on the intrinsic relationship within instances while ig-
noring the extrinsic constraint between different ones. Thus different instances
with similar distributions may be wrongly associated by using previous tracking
embeddings only through such multi-label classification loss constraint.

Alternatively, we propose an efficient single-stage fully convolutional net-
work for video instance segmentation task, considering that single-stage instance
segmentation is simpler and faster. Based on the recent instance segmentation
method CondInst [37], an extra tracking head is added to simultaneously learn
instance-wise tracking embeddings for instance association besides original clas-
sification head, box head, and mask head by dynamic filter. To improve in-
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stance association accuracy between adjacent frames, a spatio-temporal con-
trastive learning strategy is utilized to exploit relations between different in-
stances. Specifically, for a tracking embedding query, we densely sample hundreds
of negative and positive embeddings from reference frames based on the label as-
signment results, acting as a contrastive manner to jointly pull closer to the same
instances and push away from different instances. Different from previous metric
learning based instance association methods i.e., Triplet Loss, the proposed con-
trastive strategy enables efficient many-to-many relations learning across frames.
We believe this contrast mechanism enhances the instance similarity learning,
which provides more substantial supervision than using only the labels. More-
over, this contrastive learning scheme is applied in a bi-directional way to better
leverage the temporal information from both forward and backward views. At
last, we further propose a temporal consistency scheme for instance encoding,
which contributes to both the accuracy and smoothness of the video instance
segmentation task.

In summary, our main contributions are:

– We propose a single-stage fully convolutional network for video instance
segmentation task with an extra tracking head to simultaneously generate
instance-specific tracking embeddings for instance association.

– To achieve accurate and robust instance association, we propose a bi-directional
spatio-temporal contrastive learning strategy that aims to obtain representa-
tive and discriminative tracking embeddings. In addition, we present a novel
temporal consistency scheme for instances encoding to achieve temporally
coherent results.

– Comprehensive experiments are conducted on the YouTube-VIS-2019, YouTube-
VIS-2021, and OVIS-2021 benchmark. Without bells and whistles, we achieve
36.7% AP and 35.5% AP with ResNet-50 backbone on YouTube-VIS-2019
and YouTube-VIS-2021 datasets, which is the best performance among all
listed single-model methods with high efficiency. We also achieve best per-
formance on recent proposed OVIS-2021 dataset. In particular, compared to
the first VIS method named MaskTrack R-CNN [50], our proposed method
(STC) achieves 36.7% AP on YouTube-VIS-2019, outperforming it by 6.4%
AP with the advantage of being much simpler and faster. Compared with
recent method CrossVIS [52], STC outperforms it by 1.9% AP with a slightly
faster speed.

2 Related Works

2.1 Instance Segmentation

Instance segmentation aims to represent objects at a pixel level, which is a finer-
grained representation compared with object detection. There are mainly two
kinds of instance segmentation methods, i.e., two-stage [14, 28, 16], and single-
stage [6, 4, 41, 42, 37]. Two-stage methods first detect objects, then crop their
region features to further classify each pixel into the foreground or background,
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Fig. 2. The overview of our proposed framework. The framework contains the
following components: a shared CNN backbone for encoding frames to feature maps,
kernel generators with mask heads for instance segmentation, a mask branch to com-
bine multi-scale FPN features, and a shared tracking head with a bi-directional spatio-
temporal contrastive learning strategy (the bi-directional learning scheme is omitted
here for simplicity) for instance association. A temporal consistency constraint is ap-
plied to the kernel weights, as the blue line shows. Best viewed in color.

while the framework of single-stage instance segmentation is much simpler. For
example, YOLACT [4] is proposed to generate a set of prototype masks and
predict per-instance mask coefficients. The instance masks are then produced
by linearly combining the prototypes with the mask coefficients. SOLO [41, 42]
reformulates the instance segmentation as two simultaneous category-aware pre-
diction problems, i.e., location prediction, and mask prediction, respectively.
Inspired by dynamic filter network [18], CondInst [37] proposes to dynamically
predict instance-aware filters for mask generation. SOLOv2 [42] further incorpo-
rates dynamic filter scheme to dynamically segments each instance in the image
with a novel matrix non-maximum suppression (NMS) technique. Compared to
the image instance segmentation, video instance segmentation aims not only to
segment object instances in individual frames but also to associate the predicted
instances across frames.

2.2 Video Instance Segmentation

Video instance segmentation [50] aims to simultaneously classify, segment, and
track instances of the videos. Various complicated pipelines are designed by
state-of-the-art methods to solve it. To better introduce the related methods,
we separate them into the following groups. (1) The two-stage method Mask-
Track R-CNN [50], as the pioneering work for VIS, extends image instance seg-
mentation method Mask R-CNN [14] to video domain by introducing an extra
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tracking branch for instance association. Another method in the two-stage group
is MaskProp [2], which first uses Hybrid Task Cascade (HTC) [7] to generate
the predicted masks and propagates them temporally to the other frames in a
video. Recently, CompFeat [12] proposed a feature aggregation approach based
on MaskTrack R-CNN, which refines features by aggregating multiple adjacent
frames features. (2) Relying on 3D convolutions, STEm-Seg [1] models a video
clip as a single 3D spatial-temporal volume and separates object instances by
clustering. (3) Based on feature-aggregation, STMask [23] proposes a simple spa-
tial feature calibration to detect and segment object masks frame-by-frame, and
further introduces a temporal fusion module to track instances across frames.
(4) More recently, a transformer-based method VisTR [44] is proposed to re-
formulate VIS as a parallel sequence decoding problem. (5) There also exist
some single-stage VIS methods, e.g., SipMask [5], and TraDeS [46]. SipMask [5]
proposes a spatial preservation module to generate spatial coefficients for the
mask predictions while recently proposed TraDeS [46] presents a joint detec-
tion and tracking model by propagating the previous instance features with the
predicted tracking offset. CrossVIS [52] proposes cross-frame instance-wise con-
sistency loss for video instance segmentation. Although current methods have
made good progress, their complicated pipelines or unsatisfying performance
prohibit practical application. In contrast, the proposed framework acts in a
fully convolutional manner with decent performance and efficiency.

2.3 Contrastive Learning

Contrastive learning has lead to considerable progress in many real-world appli-
cations [13, 8, 36, 48, 31, 21, 9]. For example, MOCO [13] builds image-level large
dictionaries for unsupervised representation learning using contrastive loss. Sim-
CLR [8] utilizes the elaborate data augmentation strategies and a large batch,
which outperforms MOCO by a large margin on self-supervised learning Ima-
geNet [34] classification task. Different from the above methods, which focus on
image-level contrastive learning for unsupervised representation learning, we use
modified multiple-positives contrastive learning to learn instance-level tracking
embeddings accurately for video instance segmentation tasks.

3 Method

In this section, we first briefly review the instance segmentation method CondInst [37]
for mask generation of still-image. Then, we introduce the proposed whole frame-
work for the video instance segmentation task. Next, we present a novel spatio-
temporal contrastive learning strategy for tracking embeddings to achieve ac-
curate and robust instance association. In addition, we further propose a bi-
directional spatio-temporal contrastive learning strategy. At last, the temporal
consistency scheme aiming to achieve temporally coherent results is introduced
in detail.
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3.1 Mask Generation for Still-image

For still-image instance segmentation, we use the dynamic conditional convolu-
tions method CondInst [37, 18]. Specifically, instance mask at location (x, y) can
be generated by convolving an instance-agnostic feature map F̃x,y

mask from mask
branch and instance-specific dynamic filter θx,y, which is calculated as follows:

mx,y = MaskHead(F̃x,y
mask;θx,y), (1)

where F̃x,y
mask is the combination of multi-scale fused feature map Fmask from

FPN features {P3, P4, P5} and relative coordinates Ox,y. The MaskHead con-
sists of three 1 × 1 conv-layers with dynamic filter θx,y at location (x, y) as
convolution kernels. mx,y ∈ RH×W is the predicted binary mask at location
(x, y) as shown in Figure 2.

3.2 Proposed Framework for VIS

The overall framework of the proposed method is illustrated in Figure 2. Based
on the instance segmentation method CondInst [37], we add a tracking head for
instances association. The whole architecture mainly contains following compo-
nents: (1) A shared CNN backbone (e.g. ResNet-50 [15]) is utilized to extract
compact visual feature representations with FPN [25]. (2) Multiple heads in-
cluding a classification head, a box regression head, a centerness head, a kernel
generator head, and a mask head as same as CondInst [37]. Since the architec-
tures of the above classification, box regression, and centerness heads are not
our main concerns, we omit them here (please refer to [38] for the details). (3)
A tracking head where spatio-temporal contrastive learning strategy is proposed
to associate instances across frames with comprehensive relational cues in the
tracking embeddings. (4) Temporal consistency scheme on instance-wise kernel
weights across frames aims to generate temporally coherent results.

3.3 Spatio-Temporal Contrastive Learning

To associate instances from different frames, an extra lightweight tracking head
is added to obtain the tracking embeddings [50, 5, 12] in parallel with the original
kernel generator head. The tracking head consists of several convolutional layers
which take multi-scale FPN features {P3, P4, P5} as input. And the outputs are
fused to obtain the feature map of tracking embedding. As shown in Figure 2,
given an input frame I for training, we randomly select a reference frame Iref
from its temporal neighborhood. A location is defined as a positive sample if it
falls into any ground-truth box and the class label c of the location is the class
label of the ground-truth box. If a location falls into multiple bounding boxes, it
is considered as the positive sample of the bounding box with minimal area [38].
Thus, two locations formulate a positive pair if they are associated with the same
instance across two frames and a negative pair otherwise.

During training, for a given frame, the model first predicts the object de-
tection results. Then, the tracking embedding of each instance can be extracted
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from the tracking feature map by the center of the predicted bounding box. For
a training sample with extracted tracking embedding q, we can obtain positive
embeddings k+ and negative embeddings k− according to label assignment re-
sults at reference frame. Note that traditional unsupervised representation learn-
ing [13, 8] with contrastive learning only uses one positive sample and multiple
negative samples as follows:

Lq = − log
exp(q · k+)

exp(q · k+) +
∑

k− exp(q · k−)
. (2)

Since there are many positive embeddings at reference frame for each train-
ing sample, instead of randomly selecting one positive embedding at reference
frames, we optimize the objective loss with multiple positive embeddings and
multiple negative embeddings as:

Lcontra = −
∑
k+

log
exp(q · k+)

exp(q · k+) +
∑

k− exp(q · k−)

=
∑
k+

log[1 +
∑
k−

exp(q · k− − q · k+)].
(3)

Suppose there are Npos training samples at input frame, the objective track loss
with multiple samples is:

Ltrack =
1

Npos

Npos∑
i=1

Li
contra. (4)

Bi-directional Spatio-Temporal Learning. Many video-related tasks have
shown the effectiveness of bi-directional modeling [54, 35]. To fully exploit such
temporal context information, we further propose a bi-directional spatio-temporal
learning scheme to learn instance-wise tracking embeddings better. Note that we
only utilize this scheme in the training stage, and thus it does not affect the in-
ference speed. Similar to Equation 4, the objective function of bi-directional
spatio-temporal contrastive learning can be denoted as L̂track by reversing in-
put frame and reference frame. Thus, the final bi-directional spatio-temporal
contrastive loss is:

Lbi−track =
1

2
(Ltrack + L̂track). (5)

3.4 Temporal Consistency

Compared with image data, the coherent property between frames is also cru-
cial to video-related researches. Thus, we add a temporal consistency constraint
on the kernel weights, marked as the blue line in Figure 2, to capture such
prior during training so that the predicted masks will be more accurate and
robust across frames. Given an instance at location (x, y) appearing at both
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input and reference frames, we use (x, y) and (x̂, ŷ) to denote its positive candi-
date positions from two frames, respectively. Formally, the temporal consistency
constraint during training can be formulated as an L2-loss function:

Lconsistency = ||θx,y − θref
x̂,ŷ ||

2 + ||mx,y −mref
x̂,ŷ ||

2, (6)

where θref
x̂,ŷ is the dynamic filter at reference frame, mref

x̂,ŷ is the predicted in-
stance mask by reference dynamic filter. With such a simple constraint, our ker-
nel generator can obtain accurate, robust and coherent mask predictions across
frames.

3.5 Training and Inference

Training Scheme. Formally, the overall loss function of our model can be
formulated as follows:

Loverall = Lcondinst + λbLbi−track + λcLconsistency, (7)

where Lcondinst denotes the original loss of CondInst [37] for instance segmen-
tation. We refer readers to [37] for the details of Lcondinst. λb and λc are the
hyper-parameters.

Inference on Frame. For each frame, we forward it through the model to get
the outputs, including classification confidence, centerness scores, box predic-
tions, kernel weights, and tracking embeddings. Then we obtain the box detec-
tions by selecting the positive positions whose classification confidence is larger
than a threshold (set as 0.03), similar to FCOS [38]. After that, following pre-
vious work MaskTrack R-CNN [50], the NMS [4] with the threshold being 0.5
is used to remove duplicated detections. In this step, these boxes are also asso-
ciated with the kernel weights and tracking embeddings. Supposing that there
remain T boxes after the NMS, thus we have T groups of the generated kernel
weights. Then T groups of kernel weights are used to produce T mask heads.
These instance-specific mask heads are applied to the positions encoded mask
feature to predict the instance masks following [37]. T is 10 in default following
previous work MaskTrack R-CNN.

Inference on Video.Given a testing video, we first construct an empty memory
bank for the predicted instance embeddings. Then our model processes each
frame sequentially in an online scheme. Our network generates a set of predicted
instance embeddings at each frame. The association with identified instances
from previous frames relies on the cues of embedding similarity, box overlap,
and category label similar to the MaskTrack R-CNN [50]. All predicted instance
embeddings of the first frame are directly regarded as identified instances and
saved into the memory bank. After processing all frames, our method produces
a set of instances sequence. The majority votes are utilized to decide the unique
category label of each instance sequence.
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Table 1. Comparisons with some state-of-the-art approaches on YouTube-VIS-2019
val set.✓indicates using extra data augmentation (e.g., random crop, higher resolution
input, multi-scale training) [2] or additional data [1, 2, 12, 44]. † indicates the method
that reaches higher performance by stacking multiple networks, and we regard it an
unfair competitor in general setting. Note that STMask [23] uses deformable convo-
lution network (DCN) [10] as the backbone, which is still inferior to our method at
both accuracy and speed, demonstrating the superiority of our proposed framework.
†† means transformer on top of ResNet-50 or ResNet-101.

Method Publication Augmentations Backbone FPS AP AP50 AP75 AR1 AR10

MaskTrack R-CNN [50] ICCV’19 ✗ ResNet-50 33 30.3 51.1 32.6 31.0 35.5
SipMask [5] ECCV’20 ✗ ResNet-50 34 32.5 53.0 33.3 33.5 38.9
STEm-Seg [1] ECCV’20 ✗ ResNet-50 4.4 30.6 50.7 33.5 31.6 37.1
CompFeat [12] AAAI’21 ✗ ResNet-50 < 33 35.3 56.0 38.6 33.1 40.3
TraDeS [46] CVPR’21 ✗ ResNet-50 26 32.6 52.6 32.8 29.1 36.6
QueryInst [11] ICCV’21 ✗ ResNet-50 32 34.6 55.8 36.5 35.4 42.4
CrossVIS [52] ICCV’21 ✗ ResNet-50 39.8 34.8 54.6 37.9 34.0 39.0
VisSTG [40] ICCV’21 ✗ ResNet-50 22 35.2 55.7 38.0 33.6 38.5
PCAN [22] NeurIPS’21 ✗ ResNet-50 - 36.1 54.9 39.4 36.3 41.6
Ours (STC) - ✗ ResNet-50 40.3 36.7 57.2 38.6 36.9 44.5

STMask [23] CVPR’21 DCN backbone [10] ResNet-50 29 33.5 52.1 36.9 31.1 39.2
SG-Net [27] CVPR’21 multi-scale training ResNet-50 23 34.8 56.1 36.8 35.8 40.8
VisTR [44] CVPR’21 random-crop training ResNet-50 30 35.6 56.8 37.0 35.2 40.2
QueryInst [11] ICCV’21 multi-scale training ResNet-50 32 36.2 56.7 39.7 36.1 42.9
CrossVIS [52] ICCV’21 multi-scale training ResNet-50 39.8 36.3 56.8 38.9 35.6 40.7
VisSTG [40] ICCV’21 multi-scale training ResNet-50 22 36.5 58.6 39.0 35.5 40.8
Ours (STC) - multi-scale training ResNet-50 40.3 37.6 58.9 39.7 38.2 46.2

MaskTrack R-CNN [50] ICCV’19 ✗ ResNet-101 33 30.3 51.1 32.6 31.0 35.5
SRNet [53] ACMMM’21 ✗ ResNet-101 35 32.3 50.2 34.8 32.3 40.1
STEm-Seg [1] ECCV’20 ✗ ResNet-101 2.1 34.6 55.8 37.9 34.4 41.6
PCAN [22] NeurIPS’21 ✗ ResNet-101 - 37.6 57.2 41.3 37.2 43.9
Ours (STC) - ✗ ResNet-101 36.6 37.8 58.5 40.6 38.5 46.3

SipMask [5] ECCV’20 multi-scale training ResNet-101 24 35.8 56.0 39.0 35.4 42.4
STMask [23] CVPR’21 DCN backbone [10] ResNet-101 23 36.8 56.8 38.0 34.8 41.8
SG-Net [27] CVPR’21 multi-scale training ResNet-101 20 36.3 57.1 39.6 35.9 43.0
VisTR [44] CVPR’21 random-crop training ResNet-101 28 38.6 61.3 42.3 37.6 44.2
Ours (STC) - multi-scale training ResNet-101 36.6 39.2 61.5 42.4 39.7 47.3

4 Experiments

4.1 Dataset

To verify the effectiveness of our approach, we evaluate it on recent three video in-
stance segmentation benchmarks, YouTube-VIS-2019 [50], YouTube-VIS-2021 [49]
and OVIS-2021 [33] datasets. Following previous works [50, 2, 52], we evaluate
our method on the validation sets of YouTube-VIS-2019, YouTube-VIS-2021 and
OVIS-2021.

YouTube-VIS-2019 dataset contains 40 class annotations, including many
common objects. The official dataset consists of three subsets: 2238 training
videos, 302 validation videos, and 343 test videos.

YouTube-VIS-2021 dataset is an improved version of YouTube-VIS-2019 con-
taining 40 class annotations. It collects more videos and high-quality annota-
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tions. This dataset also consists of three subsets: 2985 training videos, 421 vali-
dation videos, and 453 test videos.
OVIS-2021 is a new large scale benchmark dataset for video instance seg-
mentation task with 25 common semantic categories. It is designed with object
occlusions in videos, which could reveal the complexity of real-world scenes. It
consists of 607 training videos, 140 validation videos, and 154 testing videos as
the official split.

4.2 Metrics

The evaluation metrics are average precision (AP) and average recall (AR), with
the video Intersection over Union (IoU) of the mask sequences as the thresh-
old [50]. Specifically, for a predicted mask m̂i and a ground-truth mask mj , we
first extend them to the whole video with length T by padding empty mask.
Then,

IoU(i, j) =

∑T
t=1 m̂

i
t ∩mj

t∑T
t=1 m̂

i
t ∪mj

t

. (8)

According to the definition, if the model detects object masks successfully but
fails to associate the objects across frames, it still gets a low IoU. Thus, accurate
and robust instance association across frames is very crucial for achieving high
performance.

4.3 Implementation Details

Model Settings. In our experiments, we choose the ResNet-50 [15] and ResNet-
101 with FPN [25] as the backbone in the proposed method. Our model is pre-
trained on COCO train2017 [26] with 1× schedule following previous works [5,
52, 50]. We implement the proposed method with PyTorch [32] and the FPS is
measured on an RTX 2080 Ti GPU including the pre- and post-processing steps
for fair comparison following previous work [52]. The optimizer of the proposed
method is SGD, with a learning rate 5e-3 and a weight decay 1e-4. The models
are trained with 1× schedule for 12 epoch, and we decay the lr with the ratio 0.1,
in the 8-th and 11-th epoch. The input frames are resized to 640×360 following
previous works [50, 52, 12].
Hyper-parameters. There exists some hyper-parameters in our proposed frame-
work, i.e., bi-directional contrastive learning loss λb, and temporal consistency
loss λc. In this paper, we set λb = 0.2 and λc = 10 in default.

4.4 Main Results

Here we compare our method with two-stage [51, 39, 50, 2, 12], single-stage [5, 46,
27], 3D convolution-based [1], feature aggregation-based [23], and transformer-
based [44] methods. For some differences in the training settings (e.g., resolu-
tion, training epochs) vary from different methods, we strictly follow MaskTrack
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Table 2. Comparisons with some re-
cent VIS methods on the YouTube-
VIS-2021 val set. We use ResNet-50
backbone and 1× schedule for all exper-
iments for fair comparison.

Methods AP AP50 AP75 AR1 AR10

SipMask [5] 28.6 48.9 29.6 26.5 33.8
MaskTrack R-CNN [50] 31.7 52.5 34.0 30.8 37.8
STEm-Seg [1] 33.3 53.8 37.0 30.1 37.6
CrossVIS [52] 34.2 54.4 37.9 30.4 38.2
Ours (STC) 35.5 57.4 38.0 32.8 42.2

Table 3. Comparisons with some re-
cent VIS methods on very challenging
OVIS-2021 val set. We use ResNet-50
backbone and 1× schedule for all exper-
iments for fair comparison.

Methods AP AP50 AP75 AR1 AR10

SipMask [5] 10.3 25.4 7.8 7.9 15.8
MaskTrack R-CNN [50] 10.9 26.0 8.1 8.3 15.2
STEm-Seg [1] 13.8 32.1 11.9 9.1 20.0
CrossVIS [52] 14.9 32.7 12.1 10.3 19.8
Ours (STC) 15.5 33.5 13.4 11.0 20.8

R-CNN [50], SipMask [5] and CrossVIS [52] with 1× schedule and 640×360
resolution for fair comparison.

YouTube-VIS-2019. Without any bells and whistles, our proposed method
achieves the best performance 36.7% AP among the listed single-model meth-
ods. More specifically, among the two-stage methods, our model outperforms the
original MaskTrack R-CNN [50] by 6.4 % in AP (36.7% vs. 30.3%). As discussed
in VisTR [44], we also argue that the performance of MaskProp [2] relies heav-
ily on stacking multiple networks, e.g., Spatio-temporal Sampling Network [3]
and Hybrid Task Cascade Network [7], not to mention the larger resolution and
more training epochs. Our model also beats the recently proposed CompFeat [12]
by 1.4 % in AP with a significant improvement on the performance of speed.
Meanwhile, it outperforms STEm-Seg [1] and VisTR [44] with the same back-
bone on the accuracy, which indicates the superiority of our method. Note that
VisTR utilizes multi-scale training and takes a week on 8 NVIDIA Tesla V100
for training. Furthermore, compared with the single-stage methods SipMask [5]
and TraDeS [46], our method obtains about 4.2 % and 4.1 % improvement in AP,
respectively. Compared with the feature aggregation-based method STMask [23]
which uses multi-frames to obtain more robust features, our method surpasses it
by 3.2 % in AP for ResNet-50 backbone, and even it uses a stronger ResNet-50-
DCN backbone. When compared with recent work CrossVIS [52], our method
still shows the superiority of the performance on both performance and speed.

As shown in Table 1, we also compare the FPS (frames per second) with
other state-of-the-art methods. Our method achieves 36.7% AP at a 40.3 FPS,
which is the best tradeoff for the single model. In addition, our method can run
an online mode which is crucial for practical usages.

YouTube-VIS-2021.We evaluate the recently proposed MaskTrack R-CNN [50],
SipMask [5] and CrossVIS [52] on YouTube-VIS-2021 using the official implemen-
tation for comparison. As shown in Table 2, our method surpasses MaskTrack
R-CNN [50] and CrossVIS [52] by 3.8 % and 1.3 % in AP , which verifies the
effectiveness of our method.

OVIS-2021. From Table 3 we can observe that all methods meet a large perfor-
mance degradation due to the complexity and occlusions in OVIS-2021 dataset.
Our method achieves the best 15.5% AP, surpassing all methods under the same
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Table 4. Ablation studies for each com-
ponent of the proposed framework on
YouTube-VIS-2019 validation set.

Baseline Consistency Contrastive Bi-direction AP

✓ 33.7
✓ ✓ 34.4
✓ ✓ ✓ 36.3
✓ ✓ ✓ ✓ 36.7

Table 5. Comparisons among different
settings of the track embedding on the
YouTube-VIS-2019 validation set.

Contrastive Bi-direction Embedding dim AP

✗ ✗ 256 34.5
✓ ✗ 256 36.2
✗ ✓ 256 35.4
✓ ✓ 256 36.7

Table 6. Comparisons among different
settings of the kernel generator head on
the YouTube-VIS-2019 validation set.

Consistency # Conv AP

✗ 1 31.5
✗ 2 33.7
✗ 3 36.2
✗ 4 36.0

✓ 3 36.7

Table 7. Comparisons among differ-
ent settings of the mask branch on the
YouTube-VIS-2019 validation set.

Coord. # Channel AP

✗ 1 28.7
✗ 4 33.6
✗ 8 36.2
✗ 16 36.1

✓ 8 36.7

experimental conditions. We hope that our proposed method can serve as a
strong baseline for this challenging benchmark.

4.5 Ablation Studies

We conduct experiments on the YouTube-VIS-2019 validation set with the ResNet-
50 backbone and 1× schedule for the ablation studies.

Analysis for Each Component.As shown in Table 4, we first use CondInst [37]
to obtain the instance masks instead of utilizing RoIAlign and mask head in
MaskTrack R-CNN [50], which achieves 3.4 % in AP improvements (33.7% vs.
30.3%). Besides the performance improvement, this component also changes the
two-stage model to a simple single-stage and fully convolutional one with faster
speed. Note that our temporal consistency constraint for the kernel generator
successfully gains 0.7 % in AP by digging deeper into the temporal informa-
tion in the video sequence. For the instances association across frames, we con-
duct experiments to verify the effectiveness of two components (“Contrastive”
and “Bi-direction”). Specifically, when only using spatio-temporal contrastive
learning module, we could achieve 1.9% in AP improvement. When using the
bi-directional contrastive learning strategy, we finally obtain 36.7% in AP, sur-
passing “Contrastive” baseline by 0.4% in AP, demonstrating the effectiveness
of the bi-directional learning strategy.

Kernel Generator. Kernel generator from CondInst [37] plays a critical role
in our method. Thus, we conduct ablation studies to show the impact of pa-
rameters in kernel generator head. As presented in Table 6, with the number
of convolutions in kernel generator head increasing, the performance improves
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Table 8. Comparisons among different settings of the negative sampling methods of
contrastive learning on the YouTube-VIS-2019 validation set.

Inbox # Negative AP

✗ 0 34.9
✗ 64 36.5
✗ 128 36.7
✗ 256 36.4

✓ 128 35.2

w/o bi-directional contrastive learning w. bi-directional contrastive learning

Fig. 3. Visualizations of instance embeddings without or with bi-directional contrastive
learning module using t-SNE.

steadily and achieves the peak 36.7% AP with three stacked convolutions. Tem-
poral consistency obtains 0.5% in AP, which demonstrates the effectiveness.

Mask Branch. To enhance the expressiveness of the mask feature, we further
explore the channel number and relative coordinate map (“Coord.”) used in
the mask branch. As illustrated in Table 7, the 8-channel mask feature achieve
36.2% AP without the coordinate map, and extra channels cannot improve the
performance. We set the channel number of the mask feature to 8 by default
as a result. Relative coordinates are attached to the mask feature for better
performance (about 0.5% in AP improvement).

Tracking Embedding. The tracking embedding is crucial for VIS since AP
relies heavily on the accuracy of instance association. We compare with differ-
ent tracking embedding dimensions. As shown in Table 5, AP improves as the
embedding dimension increases. However, we can not afford the complexity cost
when the embedding dimension is larger than 256 considering the speed. Thus,
we set the embedding dimension as 256 by default.

Negative Sampling. The designed contrastive learning strategy aims to obtain
representative and discriminative tracking embeddings. Thus, we further explore
different numbers of negative embeddings and how they are selected in Table 8.
“Inbox” means we randomly select the negative embeddings within boxes from
negative locations according to label assignment results. We find that choosing
128 negative embeddings is a good balance of total training time and accuracy.
Moreover, randomly selecting negative embeddings from the whole feature map
of the reference frame is much better than “Inbox”. This observation verifies
that the model can learn more discriminative representations from background
stuff or objects.



14 Zhengkai Jiang et al.

MaskTrack
R-CNN

SipMask

Ours w/o 
consistency

Ours

Fig. 4. Visualization of our proposed method and MaskTrack R-CNN on the YouTube-
VIS-2019 val set.

4.6 Visualizations

Instance Embedding. To verify the effectiveness of the proposed method qual-
itatively, we visualize the instance embeddings of the same video sequence using
t-SNE [29], which is shown in Figure 3. Comparing with Figure 3(a), the in-
stance embeddings of Figure 3(b) is more separable, which indicates that our
proposed STC module helps to distinguish different instances in the embedding
space. Thus, compared with the original multi-class classification loss [50], we
could obtain more accurate instance association accuracy for video instance seg-
mentation task.

Video Visualization. The visualization of the proposed method on the YouTube-
VIS-2019 validation dataset is shown in Figure 4. Compared with baseline method
MaskTrack R-CNN [50], as shown in the first row and the second row, STC
achieve more accurate segmentation results. From the last two rows, STC could
achieve more coherent tracking results compared with MaskTrack R-CNN base-
line, which demonstrates the effectiveness of the proposed spatio-temporal con-
trastive learning strategy. In conclusion, our method can segment and associate
instances better with more accurate boundary results in challenging situations
while MaskTrack R-CNN suffers from the missing instances or identity mistakes.

5 Conclusion

In this work, we introduced a effective architecture for video instance segmen-
tation. Our model is conceptually simple without requiring RoIAlign operation
or 3D convolutions. Moreover, it achieves state-of-the-art single-model results
(i.e., ResNet-50 backbone) on the YouTube-VIS-2019, YouTube-VIS-2021, and
OVIS-2021 datasets in a fully convolutional fashion. We hope our work could
serve an strong baseline, which could inspire designing more efficient framework
and rethinking the embeddings loss for challenging video instance segmentation
task.
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